3d printing pla waste to produce ceramic based particulate reinforced composite using abundant silica-sand: Mechanical properties characterization

Waleed Ahmed, Sidra Siraj, Ali H. Al-Marzouqi

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)

Abstract

Due to the significant properties of silica, thermostatics can be enhanced using silica-additives to maximize the quality of polymer compounds and transform plastics into tailored properties. The silica additives can enhance the handling and quality performance of composites and thermoplastic polymers due to their diverse potential. Besides, using silica as an additive in different characteristics can allow granulates and powders to flow easily, minimize caking, and control rheology. On the other hand, the eruption of 3D printing technology has led to a massive new waste source of plastics, especially the polylactic acid (PLA) that is associated with the fused deposition modeling (FDM) process. In this paper, the impact on the mechanical properties when silica is mixed with waste PLA from 3D printing was studied. The PLA/silica mixtures were prepared using different blends through twin extruders and a Universal Testing Machine was used for the mechanical characterization. The result indicated that increasing silica composition resulted in the increase of the tensile strength to 121.03 MPa at 10 wt%. Similar trends were also observed for the toughness, ductility, and the yield stress values of the PLA/silica blends at 10 wt%, which corresponds to the increased mechanical property of the composite material reinforced by the silica particles. Improvement in the mechanical properties of the developed composite material promotes the effective recycling of PLA from applications such as 3D printing and the potential of reusing it in the same application.

Original languageEnglish
Article number2579
Pages (from-to)1-19
Number of pages19
JournalPolymers
Volume12
Issue number11
DOIs
Publication statusPublished - Nov 2020

Keywords

  • 3D printing
  • PLA
  • Silica
  • Waste

ASJC Scopus subject areas

  • General Chemistry
  • Polymers and Plastics

Fingerprint

Dive into the research topics of '3d printing pla waste to produce ceramic based particulate reinforced composite using abundant silica-sand: Mechanical properties characterization'. Together they form a unique fingerprint.

Cite this