A bio-analytical system for rapid cellular electrophysiological assays

Henry O. Fatoyinbo, David H. Gould, Fatima H. Labeed

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, the use of non-uniform ac electric fields on biological cells for bioanalysis, through multiple, independently configurable channels is presented. The programmable system has been used to obtain the dielectrophoretic spectra of cells in near real time, within 90 seconds. This is a significant improvement on existing dielectrophoretic techniques as simultaneous parallel measurement of the dielectrophoretic forces at different frequencies has potential of revealing subtle changes to the electrophysiology of cells, as they occur. The results show that with continuous on-chip monitoring, cells exposed to a chemical agent that induces apoptosis begin to exhibit a spectrum that differs from untreated cells, as indicated from shifts in the observed crossover frequency values.

Original languageEnglish
Title of host publication2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Pages6510-6513
Number of pages4
DOIs
Publication statusPublished - 2010
Externally publishedYes
Event2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10 - Buenos Aires, Argentina
Duration: Aug 31 2010Sept 4 2010

Publication series

Name2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10

Conference

Conference2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Country/TerritoryArgentina
CityBuenos Aires
Period8/31/109/4/10

ASJC Scopus subject areas

  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Health Informatics

Fingerprint

Dive into the research topics of 'A bio-analytical system for rapid cellular electrophysiological assays'. Together they form a unique fingerprint.

Cite this