A convolutional neural network-based diagnostic method using resting-state electroencephalograph signals for major depressive and bipolar disorders

Yu Lei, Abdelkader Nasreddine Belkacem, Xiaotian Wang, Sha Sha, Changming Wang, Chao Chen

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Background: Early and accurate diagnosis of bipolar and major depressive disorders is important in clinical practice. However, no diagnostic biomarkers can discriminate bipolar from major depressive disorder with high accuracy at present. Methods: We propose a novel convolutional neural network architecture using multichannel raw resting-state electroencephalograph signals to differentiate bipolar disorder from major depressive disorder. This method has great potential in diagnosing mental disorders. In total, 101 patients with major depressive disorder, 82 patients with bipolar disorder, and 81 healthy controls were assessed. Clinical diagnosis was performed by psychiatrists based on the Diagnostic and Statistical Manual of Mental Disorders, fifth edition. Participants were instructed to fix their eyes on a cross on the monitor during the collection of resting-state electroencephalograph signals. Results: A classification mean accuracy of 96.88% was achieved using the resting-state electroencephalograph signals with the 10-fold cross-validation method. The results indicate that deep neural networks could learn efficient feature patterns automatically without manual feature selections. Both statistical analysis and feature visualization on different brain regions showed that the classification performance and the learned features of the proposed model were consistent with that obtained in neurobiological studies on bipolar and major depressive disorders. Conclusions: The combined use of deep neural networks and electroencephalograph signals is an effective approach for the computer-aided diagnosis of bipolar and major depressive disorders.

Original languageEnglish
Article number103370
JournalBiomedical Signal Processing and Control
Volume72
DOIs
Publication statusPublished - Feb 2022

Keywords

  • Bipolar disorder
  • Electroencephalography
  • Major depressive disorder
  • Neural networks

ASJC Scopus subject areas

  • Signal Processing
  • Health Informatics

Fingerprint

Dive into the research topics of 'A convolutional neural network-based diagnostic method using resting-state electroencephalograph signals for major depressive and bipolar disorders'. Together they form a unique fingerprint.

Cite this