Abstract
Patterns summarizing mutual associations between class decisions and attribute values in a pre-classified database, provide insight into the significance of attributes and also useful classificatory knowledge. In this paper we have proposed a conditional probability based, efficient method to extract the significant attributes from a database. Reducing the feature set during pre-processing enhances the quality of knowledge extracted and also increases the speed of computation. Our method supports easy visualization of classificatory knowledge. A likelihood-based classification algorithm that uses this classificatory knowledge is also proposed. We have also shown how the classification methodology can be used for cost-sensitive learning where both accuracy and precision of prediction are important.
Original language | English |
---|---|
Pages (from-to) | 43-56 |
Number of pages | 14 |
Journal | Pattern Recognition Letters |
Volume | 26 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 1 2005 |
Externally published | Yes |
Keywords
- Classificatory knowledge extraction
- Feature selection
- Significance of attributes
ASJC Scopus subject areas
- Software
- Signal Processing
- Computer Vision and Pattern Recognition
- Artificial Intelligence