A level-set method for particle deposition on surfaces

Y. F. Yap, F. M. Vargas, J. C. Chai

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

This article presents a fixed-mesh approach to model convective-diffusive particle deposition onto surfaces. The deposition occurring at the depositing front is modeled as a first order reaction. The evolving depositing front is captured implicitly using the level-set method. Within the level-set formulation, the particle consumed during the deposition process is accounted for via a volumetric sink term in the species conservation equation for the particles. Fluid flow is modeled using the incompressible Navier-Stokes equations. The presented approach is implemented within the framework of a finite volume method. Validations are made against solutions of the total concentration approach for one- and two-dimensional depositions with and without convective effect. The presented approach is then employed to investigate deposition on single- and multi-tube arrays in a cross-flow configuration.

Original languageEnglish
Title of host publicationASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Pages923-935
Number of pages13
DOIs
Publication statusPublished - 2012
Externally publishedYes
EventASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012 - Rio Grande, Puerto Rico
Duration: Jul 8 2012Jul 12 2012

Publication series

NameASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Volume1

Conference

ConferenceASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Country/TerritoryPuerto Rico
CityRio Grande
Period7/8/127/12/12

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'A level-set method for particle deposition on surfaces'. Together they form a unique fingerprint.

Cite this