A method for real power transfer allocation using multivariable regression analysis

Hussain Shareef, Azah Mohamed, Saifunizam Abd Khalid, Mohd Wazir Mustafa

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

A multivariable regression (MVR) approach is proposed to identify the real power transfer between generators and loads. Based on solved load flow results, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then, the results of MNE method and load flow information are utilized to determine suitable regression coefficients using MVR model to estimate the power transfer. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of the MVR output compared to that of the MNE method. The error of the estimate of MVR method ranges from 0.001 4 to 0.007 9. Furthermore, when compared to MNE method, MVR method computes generator contribution to loads within 26.40 ms whereas the MNE method takes 360 ms for the calculation of same real power transfer allocation. Therefore, MVR method is more suitable for real time power transfer allocation.

Original languageEnglish
Pages (from-to)179-186
Number of pages8
JournalJournal of Central South University of Technology (English Edition)
Volume19
Issue number1
DOIs
Publication statusPublished - Jan 2012
Externally publishedYes

Keywords

  • deregulation
  • multivariable regression
  • power systems
  • power tracing

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A method for real power transfer allocation using multivariable regression analysis'. Together they form a unique fingerprint.

Cite this