A microfluidic model for the migration of chondrocyte under pulsed electromagnetic field

Ye Tang, Fuzhi Tian, Edmond Lou, Keith Bagnall, John Cinats, Nadr Jomha, James Raso, Daniel Y. Kwok

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Pulsed electromagnetic field (PEMF) treatment is a potentially non-invasive method for tissue engineering. In this paper, a theoretical model is established to simulate the regeneration of articular cartilage for Osteoarthritis by means of pulsed electromagnetic fields (PEMF). The electrical field, flow field, single particle motion and concentration field during the growth of chondrocyte are obtained by solving the theoretical model numerically, which accounts for cell distribution in the culture dish. The induced electric field strength can be numerically obtained by Maxwell's equation and then the potential distribution by the Poisson equation and Laplace equation. The chondrocytes can be driven to move once the electric field is built up. In the calculation of the flow field, the continuity and momentum equation are applied to obtain the bulk electroosmotic velocity field which will affect the motion of the charged cell due to viscous drag forces. The motion of a single particle can be obtained by the classic Newton's second law. In addition to a single particle, the concentration distribution of particles which indicates the migration of chondrocytes can be described by the conservation law of mass. Boundary conditions are required to solve these sets of equations numerically. A comparison between model results and actual experimental data for the growth and migration of chondrocytes is performed. The results presented here allow a better understanding of the role PEMF in the treatment of Osteoarthritis.

Original languageEnglish
Title of host publicationProceedings of the 3rd International Conference on Microchannels and Minichannels, 2005
PublisherAmerican Society of Mechanical Engineers
Pages743-749
Number of pages7
ISBN (Print)0791841855, 9780791841853
DOIs
Publication statusPublished - 2005
Externally publishedYes
Event3rd International Conference on Microchannels and Minichannels, ICMM2005 - Toronto, ON, Canada
Duration: Jun 13 2005Jun 15 2005

Publication series

NameProceedings of the 3rd International Conference on Microchannels and Minichannels, 2005
VolumePART A

Other

Other3rd International Conference on Microchannels and Minichannels, ICMM2005
Country/TerritoryCanada
CityToronto, ON
Period6/13/056/15/05

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'A microfluidic model for the migration of chondrocyte under pulsed electromagnetic field'. Together they form a unique fingerprint.

Cite this