TY - JOUR
T1 - A missense founder mutation in VLDLR is associated with Dysequilibrium Syndrome without quadrupedal locomotion
AU - Ali, Bassam R.
AU - Silhavy, Jennifer L.
AU - Gleeson, Matthew J.
AU - Gleeson, Joseph G.
AU - Al-Gazali, Lihadh
N1 - Funding Information:
We are indebted to the members of the participating families for their invaluable cooperation. This work was supported in part by NIHU54HG003067 (Eric Lander, Broad Institute at MIT), R01NS048453, R01NS052455, R01NS041537, P01HD070494, and HHMI (JGG). The laboratories of L.A. and B.R.A. are funded by the United Arab Emirates University grants (# 987-08-02-10).
PY - 2012/9/14
Y1 - 2012/9/14
N2 - Background: Dysequilibrium syndrome is a genetically heterogeneous condition that combines autosomal recessive, nonprogressive cerebellar ataxia with mental retardation. The condition has been classified into cerebellar ataxia, mental retardation and disequilibrium syndrome types 1 (CAMRQ1), 2 (CAMRQ2) and 3 (CAMRQ3) and attributed to mutations in VLDLR, CA8 and WDR81 genes, respectively. Quadrupedal locomotion in this syndrome has been reported in association with mutations in all three genes.Methods: SNP mapping and candidate gene sequencing in one consanguineous Omani family from the United Arab Emirates with cerebellar hypoplasia, moderate mental retardation, delayed ambulation and truncal ataxia was used to identify the mutation. In a second unrelated consanguineous Omani family, massively parallel exonic sequencing was used.Results: We identified a homozygous missense mutation (c.2117 G > T, p.C706F) in the VLDLR gene in both families on a shared affected haplotype block.This is the first reported homozygous missense mutation in VLDLR and it occurs in a highly conserved residue and predicted to be damaging to protein function.Conclusions: We have delineated the phenotype associated with dysequilibrium syndrome in two Omani families and identified the first homozygous missense pathogenic mutation in VLDLR gene with likely founder effect in the southeastern part of the Arabian Peninsula.
AB - Background: Dysequilibrium syndrome is a genetically heterogeneous condition that combines autosomal recessive, nonprogressive cerebellar ataxia with mental retardation. The condition has been classified into cerebellar ataxia, mental retardation and disequilibrium syndrome types 1 (CAMRQ1), 2 (CAMRQ2) and 3 (CAMRQ3) and attributed to mutations in VLDLR, CA8 and WDR81 genes, respectively. Quadrupedal locomotion in this syndrome has been reported in association with mutations in all three genes.Methods: SNP mapping and candidate gene sequencing in one consanguineous Omani family from the United Arab Emirates with cerebellar hypoplasia, moderate mental retardation, delayed ambulation and truncal ataxia was used to identify the mutation. In a second unrelated consanguineous Omani family, massively parallel exonic sequencing was used.Results: We identified a homozygous missense mutation (c.2117 G > T, p.C706F) in the VLDLR gene in both families on a shared affected haplotype block.This is the first reported homozygous missense mutation in VLDLR and it occurs in a highly conserved residue and predicted to be damaging to protein function.Conclusions: We have delineated the phenotype associated with dysequilibrium syndrome in two Omani families and identified the first homozygous missense pathogenic mutation in VLDLR gene with likely founder effect in the southeastern part of the Arabian Peninsula.
UR - http://www.scopus.com/inward/record.url?scp=84866178329&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84866178329&partnerID=8YFLogxK
U2 - 10.1186/1471-2350-13-80
DO - 10.1186/1471-2350-13-80
M3 - Article
C2 - 22973972
AN - SCOPUS:84866178329
SN - 1471-2350
VL - 13
JO - BMC Medical Genetics
JF - BMC Medical Genetics
M1 - 80
ER -