A network and visual quality aware N-screen content recommender system using joint matrix factorization

Farman Ullah, Ghulam Sarwar, Sungchang Lee

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

We propose a network and visual quality aware N-Screen content recommender system. N-Screen provides more ways than ever before to access multimedia content through multiple devices and heterogeneous access networks. The heterogeneity of devices and access networks present new questions of QoS (quality of service) in the realm of user experience with content. We propose, a recommender system that ensures a better visual quality on user's N-screen devices and the efficient utilization of available access network bandwidth with user preferences. The proposed system estimates the available bandwidth and visual quality on users N-Screen devices and integrates it with users preferences and contents genre information to personalize his N-Screen content. The objective is to recommend content that the user's N-Screen device and access network are capable of displaying and streaming with the user preferences that have not been supported in existing systems. Furthermore, we suggest a joint matrix factorization approach to jointly factorize the users rating matrix with the users N-Screen device similarity and program genres similarity. Finally, the experimental results show that we also enhance the prediction and recommendation accuracy, sparsity, and cold start issues.

Original languageEnglish
Article number806517
JournalThe Scientific World Journal
Volume2014
DOIs
Publication statusPublished - 2014
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry,Genetics and Molecular Biology
  • General Environmental Science

Fingerprint

Dive into the research topics of 'A network and visual quality aware N-screen content recommender system using joint matrix factorization'. Together they form a unique fingerprint.

Cite this