TY - GEN
T1 - A novel free-cooling scheme for combustion turbine inlet air cooling
AU - Zamzam, Montaser M.
AU - Al-Amiri, Abdalla M.
PY - 2007
Y1 - 2007
N2 - Free-cooling is a well-known concept in the HVAC industry in which the cold water produced by cooling tower is used directly to satisfy the requirement of the cooling load without assistance by the chiller, this concept, however, is not reported in the turbine inlet air cooling applications. Free-cooling works well as long as the ambient wet bulb temperature WBT is sufficiently low to produce cold water at the required temperature but once WBT reaches its threshold value hence free-cooling mode is ceased and the chiller kicks off working under its normal mode of operation i.e. free-cooling is either enabled or disabled. The proposed system in this paper provides in addition to the above modes of operation a novel mode that utilizes the cooling tower as primary source of cooling simultaneously with the chiller which serves as a secondary source at elevated WBT. This new feature significantly reduces the yearly operating hours of the chiller and possibly its size depending on the desired inlet air temperature, actual weather conditions and design WBT. Chiller size can vary between 0-100 percent as compared to a similar classical chiller system with significant reduction in the operating hours. The proposed system basically consists of chiller, cooling tower, cooling coils, interconnecting piping and controls. The arrangement of the system equipments changes with the operation modes in two configurations; dual water circulation loops and single water circulation loop. In the dual loops configurations the system has two separate loops such that the evaporator and the cooling coils are tied in one loop while the cooling tower and condenser in the other loop whereas in the single loop configuration all equipments are connected in series in one water circulation loop. This paper presents the major equipments and characteristics of the novel chiller scheme. In addition, the study outlines the potential reduction in the chiller load, size and operating hours under a generalized weather envelope. The paper in general portrays the feasibility of using the proposed cooling scheme for turbine inlet air cooling.
AB - Free-cooling is a well-known concept in the HVAC industry in which the cold water produced by cooling tower is used directly to satisfy the requirement of the cooling load without assistance by the chiller, this concept, however, is not reported in the turbine inlet air cooling applications. Free-cooling works well as long as the ambient wet bulb temperature WBT is sufficiently low to produce cold water at the required temperature but once WBT reaches its threshold value hence free-cooling mode is ceased and the chiller kicks off working under its normal mode of operation i.e. free-cooling is either enabled or disabled. The proposed system in this paper provides in addition to the above modes of operation a novel mode that utilizes the cooling tower as primary source of cooling simultaneously with the chiller which serves as a secondary source at elevated WBT. This new feature significantly reduces the yearly operating hours of the chiller and possibly its size depending on the desired inlet air temperature, actual weather conditions and design WBT. Chiller size can vary between 0-100 percent as compared to a similar classical chiller system with significant reduction in the operating hours. The proposed system basically consists of chiller, cooling tower, cooling coils, interconnecting piping and controls. The arrangement of the system equipments changes with the operation modes in two configurations; dual water circulation loops and single water circulation loop. In the dual loops configurations the system has two separate loops such that the evaporator and the cooling coils are tied in one loop while the cooling tower and condenser in the other loop whereas in the single loop configuration all equipments are connected in series in one water circulation loop. This paper presents the major equipments and characteristics of the novel chiller scheme. In addition, the study outlines the potential reduction in the chiller load, size and operating hours under a generalized weather envelope. The paper in general portrays the feasibility of using the proposed cooling scheme for turbine inlet air cooling.
KW - Combustion turbine inlet air cooling
KW - Cooling tower
KW - Free cooling
UR - http://www.scopus.com/inward/record.url?scp=34548794045&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34548794045&partnerID=8YFLogxK
U2 - 10.1115/GT2007-27621
DO - 10.1115/GT2007-27621
M3 - Conference contribution
AN - SCOPUS:34548794045
SN - 079184790X
SN - 9780791847909
T3 - Proceedings of the ASME Turbo Expo
SP - 701
EP - 709
BT - Proceedings of the ASME Turbo Expo 2007 - Power for Land, Sea, and Air
T2 - 2007 ASME Turbo Expo
Y2 - 14 May 2007 through 17 May 2007
ER -