TY - JOUR
T1 - A novel LC-MS/MS analysis of vitamin D metabolites in mice serum and hair
T2 - impact of diet and light exposure
AU - Hakeem, Muhammad K.
AU - Al-Menhali, Asma
AU - Elangovan, Sampath K.
AU - Shah, Iltaf
N1 - Publisher Copyright:
Copyright © 2025 Hakeem, Al-Menhali, Elangovan and Shah.
PY - 2025
Y1 - 2025
N2 - Introduction: Numerous physiological systems, such as the functioning of the immune system, bone health, and the regulation of expression of genes, depend critically on vitamin D. Considering the significance of vitamin D for health, it is critical to understand how it is metabolized and the factors that affect its levels. Methods: The objective of this study was to develop and validate an LC-MS/MS method to examine the effects of light exposure and dietary vitamin D consumption on the levels of vitamin D and its metabolites in a mouse model under consistent growth conditions throughout the year. Serum and hair samples from mice were analyzed under various experimental conditions for vitamin D and its metabolites using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The experimental conditions included a vitamin D-deficient diet, a vitamin D-standard diet, and changes in ambient light exposure ranging from complete darkness to a regular light-dark cycle. Results: Mice fed a standard vitamin D diet and exposed to a regular light-dark cycle exhibited significantly higher levels of 25OHD3 in both serum and hair, indicating the synergistic effect of dietary vitamin D intake and light exposure. Mice fed a standard vitamin D diet but kept in continuous darkness showed moderately elevated 25OHD3 levels, demonstrating the efficacy of dietary vitamin D in maintaining adequate levels despite the absence of light. Conversely, mice fed a vitamin D-deficient diet and housed in darkness displayed 25OHD3 levels below the limit of quantification, highlighting the combined detrimental effects of dietary deficiency and lack of light exposure. Discussion: This study provides valuable insights into the complex interplay between dietary vitamin D intake, light exposure, and the regulation of vitamin D metabolism in mice. Moreover, our results underscore the potential implications for human health, suggesting the importance of adequate vitamin D intake and sunlight exposure in maintaining optimal vitamin D levels. Further research in this area has the potential to unveil additional factors influencing vitamin D metabolism, offering valuable insights into strategies for optimizing vitamin D levels in both animal models and human subjects.
AB - Introduction: Numerous physiological systems, such as the functioning of the immune system, bone health, and the regulation of expression of genes, depend critically on vitamin D. Considering the significance of vitamin D for health, it is critical to understand how it is metabolized and the factors that affect its levels. Methods: The objective of this study was to develop and validate an LC-MS/MS method to examine the effects of light exposure and dietary vitamin D consumption on the levels of vitamin D and its metabolites in a mouse model under consistent growth conditions throughout the year. Serum and hair samples from mice were analyzed under various experimental conditions for vitamin D and its metabolites using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The experimental conditions included a vitamin D-deficient diet, a vitamin D-standard diet, and changes in ambient light exposure ranging from complete darkness to a regular light-dark cycle. Results: Mice fed a standard vitamin D diet and exposed to a regular light-dark cycle exhibited significantly higher levels of 25OHD3 in both serum and hair, indicating the synergistic effect of dietary vitamin D intake and light exposure. Mice fed a standard vitamin D diet but kept in continuous darkness showed moderately elevated 25OHD3 levels, demonstrating the efficacy of dietary vitamin D in maintaining adequate levels despite the absence of light. Conversely, mice fed a vitamin D-deficient diet and housed in darkness displayed 25OHD3 levels below the limit of quantification, highlighting the combined detrimental effects of dietary deficiency and lack of light exposure. Discussion: This study provides valuable insights into the complex interplay between dietary vitamin D intake, light exposure, and the regulation of vitamin D metabolism in mice. Moreover, our results underscore the potential implications for human health, suggesting the importance of adequate vitamin D intake and sunlight exposure in maintaining optimal vitamin D levels. Further research in this area has the potential to unveil additional factors influencing vitamin D metabolism, offering valuable insights into strategies for optimizing vitamin D levels in both animal models and human subjects.
KW - 25OHD 25-hydroxyvitamin D
KW - LC-MS
KW - mice hair
KW - mice serum
KW - vitamin D metabolites
UR - http://www.scopus.com/inward/record.url?scp=85218230816&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85218230816&partnerID=8YFLogxK
U2 - 10.3389/fendo.2025.1494393
DO - 10.3389/fendo.2025.1494393
M3 - Article
AN - SCOPUS:85218230816
SN - 1664-2392
VL - 16
JO - Frontiers in Endocrinology
JF - Frontiers in Endocrinology
M1 - 1494393
ER -