TY - JOUR
T1 - A novel strategy for producing nano-particles from date seeds and enhancing their phenolic content and antioxidant properties using ultrasound-assisted extraction
T2 - A multivariate based optimization study
AU - Mostafa, Hussein
AU - Airouyuwa, Jennifer Osamede
AU - Maqsood, Sajid
N1 - Funding Information:
Authors would like to acknowledge United Arab Emirates University for funding this study through a PhD scholarship and Strategic grant (National Water and Energy Center) no. 12R055.
Publisher Copyright:
© 2022 The Authors
PY - 2022/6
Y1 - 2022/6
N2 - Date seeds from the date palm fruit are considered as a waste and they are known to contain several bioactive compounds. Producing nanoparticles from the date seeds can enhances their effectiveness and their utilization as novel functional food ingredients. In this study, date seed nanoparticles (DSNPs) synthesized using acid (HCl) hydrolysis method (HCl concentration of 38% and hydrolysis time of 4 days) was found to have particle size between 50 and 150 nm. The obtained DSNPs were characterized by measuring particle size and particle charge (Zetasizer), morphology using scanning electron microscope (SEM), and determination of the functional groups using fourier-transform infrared spectroscopy (FTIR). DSNPs were further treated with green extraction technology [ultrasound-assisted extraction (UAE)] using water-based and methanol-based solvent for optimizing the extraction of the bioactive compounds by implementing response surface methodology (RSM). The UAE of DSNPs were analysed for set of responses including total phenolic content (TPC), total flavonoid content (TFC), 1,1-diphenyl-2-picrlthydrazyl (DPPH) radical scavenging activity, ferric ion reducing antioxidant power (FRAP), and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity. Three-factor and four-factor Box-Behnken design (BBD) of three models (Synthesis of DSNPs, UAE with water, and UAE with methanol) was performed. The results showed that in UAE of DSNPs using water-based solvent, the key independent factors effecting the TPC and TFC and antioxidant activities were S:L ratio (40:1 mg/ml) and treatment time (9 min). Whereas the methanol-based UAE of DSNPs was mostly affected by US amplitude/power (90%) and methanol concentration (80%). All models were further optimized using response optimizer in Minitab and the generated predicted values were very comparable to the actual obtained results which confirm the significance and validity of all RSM models used. The phenolic compounds identified from DSNPs consisted mainly of 3,4-Dihydroxy benzoic acid, ferulic acid, and p-coumaric acid. The present study demonstrated a successful method for synthesising DSNPs as well as documented the optimum UAE conditions to maximize the extraction of polyphenolic compounds from DSNPs and enhancing their antioxidant activities to be used in food application.
AB - Date seeds from the date palm fruit are considered as a waste and they are known to contain several bioactive compounds. Producing nanoparticles from the date seeds can enhances their effectiveness and their utilization as novel functional food ingredients. In this study, date seed nanoparticles (DSNPs) synthesized using acid (HCl) hydrolysis method (HCl concentration of 38% and hydrolysis time of 4 days) was found to have particle size between 50 and 150 nm. The obtained DSNPs were characterized by measuring particle size and particle charge (Zetasizer), morphology using scanning electron microscope (SEM), and determination of the functional groups using fourier-transform infrared spectroscopy (FTIR). DSNPs were further treated with green extraction technology [ultrasound-assisted extraction (UAE)] using water-based and methanol-based solvent for optimizing the extraction of the bioactive compounds by implementing response surface methodology (RSM). The UAE of DSNPs were analysed for set of responses including total phenolic content (TPC), total flavonoid content (TFC), 1,1-diphenyl-2-picrlthydrazyl (DPPH) radical scavenging activity, ferric ion reducing antioxidant power (FRAP), and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity. Three-factor and four-factor Box-Behnken design (BBD) of three models (Synthesis of DSNPs, UAE with water, and UAE with methanol) was performed. The results showed that in UAE of DSNPs using water-based solvent, the key independent factors effecting the TPC and TFC and antioxidant activities were S:L ratio (40:1 mg/ml) and treatment time (9 min). Whereas the methanol-based UAE of DSNPs was mostly affected by US amplitude/power (90%) and methanol concentration (80%). All models were further optimized using response optimizer in Minitab and the generated predicted values were very comparable to the actual obtained results which confirm the significance and validity of all RSM models used. The phenolic compounds identified from DSNPs consisted mainly of 3,4-Dihydroxy benzoic acid, ferulic acid, and p-coumaric acid. The present study demonstrated a successful method for synthesising DSNPs as well as documented the optimum UAE conditions to maximize the extraction of polyphenolic compounds from DSNPs and enhancing their antioxidant activities to be used in food application.
KW - Antioxidant activity
KW - Date seed
KW - Nano-particles
KW - Polyphenolic compounds
KW - RSM
KW - Ultrasonication
UR - http://www.scopus.com/inward/record.url?scp=85131052052&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131052052&partnerID=8YFLogxK
U2 - 10.1016/j.ultsonch.2022.106017
DO - 10.1016/j.ultsonch.2022.106017
M3 - Article
C2 - 35636154
AN - SCOPUS:85131052052
SN - 1350-4177
VL - 87
JO - Ultrasonics Sonochemistry
JF - Ultrasonics Sonochemistry
M1 - 106017
ER -