A Paley-Wiener theorem for the bessel-laplace transform, I: The case SU(n,n)/SL(n,ℂ) x ℝ+*

Research output: Contribution to journalArticlepeer-review

Abstract

Let q be the tangent space to the noncompact causal symmetric space SU(n,n)/SL(n,ℂ) x ℝ+* at the origin. In this paper we give an explicit formula for the Bessel functions on q. We use this result to prove a Paley-Wiener theorem for the Bessel Laplace transform on q. Further, a flat analogue of the Abel transform is defined and inverted.

Original languageEnglish
Pages (from-to)253-271
Number of pages19
JournalJournal of Lie Theory
Volume18
Issue number2
Publication statusPublished - 2008
Externally publishedYes

Keywords

  • Abel transform
  • Multivariable bessel function
  • Non-compactly causal symmetric spaces
  • Paley-Wiener theorem

ASJC Scopus subject areas

  • Algebra and Number Theory

Fingerprint

Dive into the research topics of 'A Paley-Wiener theorem for the bessel-laplace transform, I: The case SU(n,n)/SL(n,ℂ) x ℝ+*'. Together they form a unique fingerprint.

Cite this