TY - GEN
T1 - A procedure for encapsulation in microchannel
AU - Yap, Y. F.
AU - Chai, J. C.
AU - Nguyen, N. T.
AU - Wong, T. N.
AU - Yobas, L.
PY - 2007
Y1 - 2007
N2 - A fixed-grid approach for modeling the motion of a particle-encapsulated droplet carried by a pressure driven immiscible carrier fluid in a microchannel is presented. Three phases (the carrier fluid, the droplet and the particle), and two different moving boundaries (the droplet-carrier fluid and droplet-particle interfaces), are involved. This is a moving boundaries problem with the motion of the three phases strongly coupled. In the present article, the particle is assumed to be a fluid of high viscosity and constrained to move with rigid body motion. A combined formulation using one set of governing equations to treat the three phases is employed. The droplet-carrier fluid interface is represented and evolved using a level-set method with a mass correction scheme. Surface tension is modeled using the Continuum Surface Force model. An additional signed distance function is employed to define the droplet-particle interface. Its evolution is determined from the particle motion governed by the Newton-Euler equations. The governing equations are solved numerically using a Finite Volume method on a fixed Cartesian grid. For demonstration purpose, the flows of particle-encapsulated droplets through a constricted microchannel and through a microchannel system are presented.
AB - A fixed-grid approach for modeling the motion of a particle-encapsulated droplet carried by a pressure driven immiscible carrier fluid in a microchannel is presented. Three phases (the carrier fluid, the droplet and the particle), and two different moving boundaries (the droplet-carrier fluid and droplet-particle interfaces), are involved. This is a moving boundaries problem with the motion of the three phases strongly coupled. In the present article, the particle is assumed to be a fluid of high viscosity and constrained to move with rigid body motion. A combined formulation using one set of governing equations to treat the three phases is employed. The droplet-carrier fluid interface is represented and evolved using a level-set method with a mass correction scheme. Surface tension is modeled using the Continuum Surface Force model. An additional signed distance function is employed to define the droplet-particle interface. Its evolution is determined from the particle motion governed by the Newton-Euler equations. The governing equations are solved numerically using a Finite Volume method on a fixed Cartesian grid. For demonstration purpose, the flows of particle-encapsulated droplets through a constricted microchannel and through a microchannel system are presented.
UR - http://www.scopus.com/inward/record.url?scp=43449103362&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=43449103362&partnerID=8YFLogxK
U2 - 10.1115/HT2007-32522
DO - 10.1115/HT2007-32522
M3 - Conference contribution
AN - SCOPUS:43449103362
SN - 0791842746
SN - 9780791842744
T3 - 2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference - HT 2007
SP - 417
EP - 424
BT - 2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference - HT 2007
T2 - 2007 ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007
Y2 - 8 July 2007 through 12 July 2007
ER -