A review on recent trends, challenges, and innovations in alkaline water electrolysis

Abdelrahman S. Emam, Mohammad O. Hamdan, Bassam A. Abu-Nabah, Emad Elnajjar

Research output: Contribution to journalReview articlepeer-review

2 Citations (Scopus)

Abstract

This review paper explores into the extensive realm of alkaline water electrolysis (AWE), a transformative technology for hydrogen production, offering profound insights and future prospects for sustainable growth. It embarks on this journey by explaining the fundamental principles, the application of Faraday's laws, electrolyzer design, and the intricate electrochemical processes transpiring at the cathode and anode. Subsequently, it investigates electrode materials, catalysts, membrane material and their recent developments, unveiling essential aspects of material selection and performance enhancement. The exploration extends to the domain of alkaline electrolyte solutions, where it provides a comprehensive overview of common electrolytes, the impact of concentration on system performance, and pioneering research on alternative electrolytes. Shifting focus towards large-scale systems and industrial applications, the paper unravels the economic feasibility, considerations regarding costs, and the transformative influence of alkaline water electrolysis on diverse industries. The final segment is dedicated to emerging trends and future directions. It casts light on recent breakthroughs and the potential for commercialization, presenting a vivid image of the evolving role of this technology in the sustainable energy landscape. The conclusive segment, this review offers a recapitulation of the key discoveries and insights presented throughout the paper, while delivering a critical evaluation of the present state of alkaline water electrolysis. It emphasizes the potential of the technology while recognizing critical research areas such as electrode materials, safety standards, scaling efficiency, flexible operation, and surface modification techniques. In the rapidly changing energy scenario, this paper stands as a testament to the dynamic nature of alkaline water electrolysis and its pivotal role in a sustainable energy future.

Original languageEnglish
Pages (from-to)599-625
Number of pages27
JournalInternational Journal of Hydrogen Energy
Volume64
DOIs
Publication statusPublished - Apr 25 2024

Keywords

  • Alkaline water electrolysis
  • Electrolysis industrial applications
  • Electrolyzer materials
  • Green hydrogen production

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'A review on recent trends, challenges, and innovations in alkaline water electrolysis'. Together they form a unique fingerprint.

Cite this