A study of random linear oracle ensembles

Amir Ahmad, Gavin Brown

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

Random Linear Oracle (RLO) ensembles of Naive Bayes classifiers show excellent performance [12]. In this paper, we investigate the reasons for the success of RLO ensembles. Our study suggests that the decomposition of most of the classes of the dataset into two subclasses for each class is the reason for the success of the RLO method. Our study leads to the development of a new output manipulation based ensemble method; Random Subclasses (RS). In the proposed method, we create new subclasses from each subset of data points that belongs to the same class using RLO framework and consider each subclass as a class of its own. The comparative study suggests that RS is similar to RLO method, whereas RS is statistically better than or similar to Bagging and AdaBoost.M1 for most of the datasets. The similar performance of RLO and RS suggest that the creation of local structures (subclasses) is the main reason for the success of RLO. The another conclusion of this study is that RLO is more useful for classifiers (linear classifiers etc.) that have limited flexibility in their class boundaries. These classifiers can not learn complex class boundaries. Creating subclasses makes new, easier to learn, class boundaries.

Original languageEnglish
Title of host publicationMultiple Classifier Systems - 8th International Workshop, MCS 2009, Proceedings
Pages488-497
Number of pages10
DOIs
Publication statusPublished - 2009
Externally publishedYes
Event8th International Workshop on Multiple Classifier Systems, MCS 2009 - Reykjavik, Iceland
Duration: Jun 10 2009Jun 12 2009

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume5519 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference8th International Workshop on Multiple Classifier Systems, MCS 2009
Country/TerritoryIceland
CityReykjavik
Period6/10/096/12/09

Keywords

  • Classifier Ensemble
  • Clusters
  • Naive Bayes
  • Subclasses

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'A study of random linear oracle ensembles'. Together they form a unique fingerprint.

Cite this