Abstract
Recently published CMOS optical receivers consist of a limited-bandwidth first-stage transimpedance amplifier (TIA) followed by an equalizer. Limiting the TIA’s bandwidth improves the gain and reduces the noise but introduces a significant inter-symbol interference (ISI) that is dealt with by the subsequent equalizer. Continuous-time linear equalizer (CTLE) is a commonly used equalizer in both electrical and optical links. However, recent research reported different findings about CTLE-based optical receivers. Some research papers concluded that CTLEs boost high-frequency noise compared to a full-bandwidth design. Other publications reported that high-frequency noise remains unaffected while white noise is significantly reduced. This work aims to solve this discrepancy by presenting an accurate analysis for CTLE-based optical receivers considering noise, gain, and jitter. We show that the noise performance depends on the pole/zero locations of the limited-bandwidth (LBW)-TIA and the follow-on equalizer. A properly designed CTLE-based receiver achieves a 2.5 × higher gain and a 1.74× better noise than the full-bandwidth design. The CTLE is also compared to the well-known decision feedback equalizer (DFE). The noise performance of the CTLE-based receiver lies between that of finite and infinite impulse response DFE-based receivers but achieves better gain than both architectures.
Original language | English |
---|---|
Pages (from-to) | 1 |
Number of pages | 1 |
Journal | IEEE Access |
DOIs | |
Publication status | Accepted/In press - 2022 |
Keywords
- Bandwidth
- Capacitance
- Iron
- Jitter
- Noise measurement
- Optical receiver
- Optical receivers
- Resistors
- Transfer functions
- equalizer
- jitter
- noise
- transimpedance amplifier
ASJC Scopus subject areas
- Computer Science(all)
- Materials Science(all)
- Engineering(all)
- Electrical and Electronic Engineering