TY - JOUR
T1 - AChR phosphorylation and indirect inhibition of AChR function in seronegative MG
AU - Plested, C. P.
AU - Tang, T.
AU - Spreadbury, I.
AU - Littleton, E. T.
AU - Kishore, U.
AU - Vincent, Angela
PY - 2002/12/10
Y1 - 2002/12/10
N2 - Background: Approximately 10% to 20% of patients with autoimmune MG do not have antibodies to the acetylcholine receptor (AChR), so-called seronegative MG (SNMG). IgG antibodies from up to 70% of SNMG patients bind to the muscle-specific receptor tyrosine kinase, MuSK. The plasmas and non-IgG fractions from SNMG patients (and some with AChR antibodies) also contain a factor, perhaps an IgM antibody, that inhibits AChR function, but it is not clear how this factor acts and whether it is related to the MuSK IgG antibodies. Methods: The authors studied 12 unselected SNMG plasmas and their non-IgG fractions; seven were positive for MuSK IgG antibodies. Ion flux assays, electrophysiology, phosphorylation, and kinase assays were used to look at mechanisms of action. Results: Eight of the 12 plasmas and their non-IgG fractions inhibited AChR function, but the inhibitory activity was transient and did not correlate with the presence of MuSK IgG antibodies. Two of three plasmas added outside of a cell-attached patch pipette inhibited AChR function within the patch, and these two plasmas also increased AChR phosphorylation. Conclusions: The authors propose that a plasma factor(s) in SNMG patients, distinct from MuSK IgG antibodies, binds to a muscle membrane receptor and activates a second messenger pathway leading to AChR phosphorylation and reduced AChR function. Identifying the target for this factor should lead to improved diagnosis of MG in MuSK antibody-negative patients and may provide new insights into the function of the neuromuscular junction and pathophysiological mechanisms in MG.
AB - Background: Approximately 10% to 20% of patients with autoimmune MG do not have antibodies to the acetylcholine receptor (AChR), so-called seronegative MG (SNMG). IgG antibodies from up to 70% of SNMG patients bind to the muscle-specific receptor tyrosine kinase, MuSK. The plasmas and non-IgG fractions from SNMG patients (and some with AChR antibodies) also contain a factor, perhaps an IgM antibody, that inhibits AChR function, but it is not clear how this factor acts and whether it is related to the MuSK IgG antibodies. Methods: The authors studied 12 unselected SNMG plasmas and their non-IgG fractions; seven were positive for MuSK IgG antibodies. Ion flux assays, electrophysiology, phosphorylation, and kinase assays were used to look at mechanisms of action. Results: Eight of the 12 plasmas and their non-IgG fractions inhibited AChR function, but the inhibitory activity was transient and did not correlate with the presence of MuSK IgG antibodies. Two of three plasmas added outside of a cell-attached patch pipette inhibited AChR function within the patch, and these two plasmas also increased AChR phosphorylation. Conclusions: The authors propose that a plasma factor(s) in SNMG patients, distinct from MuSK IgG antibodies, binds to a muscle membrane receptor and activates a second messenger pathway leading to AChR phosphorylation and reduced AChR function. Identifying the target for this factor should lead to improved diagnosis of MG in MuSK antibody-negative patients and may provide new insights into the function of the neuromuscular junction and pathophysiological mechanisms in MG.
UR - http://www.scopus.com/inward/record.url?scp=0037058787&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037058787&partnerID=8YFLogxK
U2 - 10.1212/01.WNL.0000041625.41937.FF
DO - 10.1212/01.WNL.0000041625.41937.FF
M3 - Article
C2 - 12473752
AN - SCOPUS:0037058787
SN - 0028-3878
VL - 59
SP - 1682
EP - 1688
JO - Neurology
JF - Neurology
IS - 11
ER -