An integrated approach using active power loss sensitivity index and modified ant lion optimization algorithm for DG placement in radial power distribution network

P. Rajakumar, P. M. Balasubramaniam, Mohammed Hasan Aldulaimi, M. Arunkumar, S. Ramesh, Mohammad Mukhtar Alam, Qasem M. Al-Mdallal

Research output: Contribution to journalArticlepeer-review

Abstract

Power losses and voltage deviations in distribution power networks (DPNs) are high since they carry more power demand than transmission power networks. Also, voltage deviation beyond the allowable range causes voltage stability problems in the DPN. The power loss (PL) in the DPN should be kept at the minimum level for the economic operation of the electric grid. Integrating distributed generation (DG) in appropriate sites of the power networks can minimize the power losses and voltage drops. An integrated optimization approach is proposed in this paper, by combining an analytical and metaheuristic algorithm to optimize the placement and sizing of multiple DGs. The active power loss sensitivity (APLS) index is an analytical mathematical computation approach used to identify the optimal bus locations for DG placement. The modified ant lion optimization (MALO) algorithm is applied to optimize the ratings of the DG systems. The MALO algorithm is proposed by adopting the Lévy flights (LF) pattern in the random walk process (RWP). LF representation of RWPs enhances the exploration phase of the ALO algorithm and helps to obtain the near-optimal solution. The proposed integrated approach optimizes multiple units of photovoltaic (PV) and wind turbine (WT) units to minimize the multi-objective function, including AP loss and voltage deviation (VD) minimizations. The effectiveness of the proposed integrated approach is validated on the IEEE 69-bus, 85-bus, and 118-bus radial DPNs. Besides, the simulation study is extended for ant lion optimization (ALO), BAT, and artificial bee colony (ABC) algorithms-based techniques. The integrated approach has reduced the total AP loss of the IEEE 69-bus and 85-bus radial DPN from 225 kW to 70.51 kW and 316.12 kW to 162.80 kW, respectively, for the optimized three PV DG units allocation. Likewise, the total AP loss of the 118-bus radial DPN is cut down from 1296.3 kW to 432.3 kW after the optimized five PV DG units allocation. Meanwhile, the total AP LOSS of the 69-bus, 85-bus, and 118-bus radial DPNs is reduced to 4.78 kW, 53.87 kW, and 112.2 kW, respectively, after the optimized WT DG allocation. Additionally, the optimized inclusion of multiple DG units significantly minimized the VD of the DPNs. The minimum VD of the 69-bus, 85-bus, and 118-bus test systems is reduced from 0.0908 p.u., 0.1297 p.u., and 0.1312 p.u. to 0.0174 p.u., 0.0384 p.u., and 0.0201 p.u., respectively, for the multiple PV unit allocations. Similarly, the minimum VDs of the 69-bus, 85-bus, and 118-bus radial DPNs are minimized to 0.0048 p.u., 0.0190 p.u., and 0.0093 p.u., respectively, following the multiple WT DG unit allocations. The simulation findings of the APLS-MALO integrated approach are related to the various optimization techniques. The comparative study reveals that the proposed integrated approach gives a more effective and efficient solution than ALO, BAT, ABC, and other optimization techniques. Finally, the simulation findings of the APLS-MALO integrated technique are verified via the calculation of conventional statistical metrics and the conduction of a non-parametric Wilcoxon test.

Original languageEnglish
Article number10481
JournalScientific reports
Volume15
Issue number1
DOIs
Publication statusPublished - Dec 2025

Keywords

  • Active power loss sensitivity index
  • Distributed generation
  • Photovoltaic
  • Power loss
  • Voltage deviation
  • Wind turbine

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'An integrated approach using active power loss sensitivity index and modified ant lion optimization algorithm for DG placement in radial power distribution network'. Together they form a unique fingerprint.

Cite this