TY - JOUR
T1 - An update on therapies for the treatment of diabetes-induced osteoporosis
AU - Mohsin, Sahar
AU - Baniyas, May M.Y.H.
AU - AlDarmaki, Reem S.M.H.
AU - Tekes, Kornélia
AU - Kalász, Huba
AU - Adeghate, Ernest A.
N1 - Publisher Copyright:
© 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2019
Y1 - 2019
N2 - Introduction: Currently, 424 million people aged between 20 and 79 years worldwide are diabetic. More than 25% of adults aged over 65 years in North America have Type 2 diabetes mellitus (DM). Diabetes-induced osteoporosis (DM-OS) is caused by chronic hyperglycemia, advanced glycated end products and oxidative stress. The increase in the prevalence of DM-OS has prompted researchers to develop new biological therapies for the management of DM-OS. Areas covered: This review covered the current and novel biological agents used in the management of DM-OS. Data were retrieved from PubMed, Scopus, American Diabetes Association and International Osteoporosis Foundation websites, and ClinicalTrials.gov. The keywords for the search included: DM, osteoporosis, and management. Expert opinion: Several biological molecules have been examined in order to find efficient drugs for the treatment of DM-OS. These biological agents include anti-osteoporosis drugs: net anabolics (parathyroid hormone/analogs, androgens, calcilytics, anti-sclerostin antibody), net anti-resorptive osteoporosis drugs (calcitonin, estrogen, selective estrogen receptor modulators, bisphosphonates, RANKL antibody) and anti-diabetic drugs (alpha glucosidase inhibitors, sulfonylureas, biguanides, meglitinides, thiazolidinediones, GLP-1 receptor agonists, dipeptidylpeptidase-4 inhibitors, sodium glucose co-transporter-2 inhibitors, insulin). Biological medications that effectively decrease hyperglycemia and, at the same time, maintain bone health would be an ideal drug/drug combination for the treatment of DM-OS.
AB - Introduction: Currently, 424 million people aged between 20 and 79 years worldwide are diabetic. More than 25% of adults aged over 65 years in North America have Type 2 diabetes mellitus (DM). Diabetes-induced osteoporosis (DM-OS) is caused by chronic hyperglycemia, advanced glycated end products and oxidative stress. The increase in the prevalence of DM-OS has prompted researchers to develop new biological therapies for the management of DM-OS. Areas covered: This review covered the current and novel biological agents used in the management of DM-OS. Data were retrieved from PubMed, Scopus, American Diabetes Association and International Osteoporosis Foundation websites, and ClinicalTrials.gov. The keywords for the search included: DM, osteoporosis, and management. Expert opinion: Several biological molecules have been examined in order to find efficient drugs for the treatment of DM-OS. These biological agents include anti-osteoporosis drugs: net anabolics (parathyroid hormone/analogs, androgens, calcilytics, anti-sclerostin antibody), net anti-resorptive osteoporosis drugs (calcitonin, estrogen, selective estrogen receptor modulators, bisphosphonates, RANKL antibody) and anti-diabetic drugs (alpha glucosidase inhibitors, sulfonylureas, biguanides, meglitinides, thiazolidinediones, GLP-1 receptor agonists, dipeptidylpeptidase-4 inhibitors, sodium glucose co-transporter-2 inhibitors, insulin). Biological medications that effectively decrease hyperglycemia and, at the same time, maintain bone health would be an ideal drug/drug combination for the treatment of DM-OS.
KW - Diabetes-induced osteoporosis
KW - anti-diabetic drugs
KW - anti-osteoporosis drugs
KW - bone
KW - bone mineral density
KW - hormones
UR - http://www.scopus.com/inward/record.url?scp=85066253913&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85066253913&partnerID=8YFLogxK
U2 - 10.1080/14712598.2019.1618266
DO - 10.1080/14712598.2019.1618266
M3 - Review article
C2 - 31079501
AN - SCOPUS:85066253913
SN - 1471-2598
VL - 19
SP - 937
EP - 948
JO - Expert Opinion on Biological Therapy
JF - Expert Opinion on Biological Therapy
IS - 9
ER -