TY - GEN
T1 - Ant colony based approach to predict stock market movement from mood collected on Twitter
AU - Bouktif, Salah
AU - Awad, Mamoun Adel
PY - 2013
Y1 - 2013
N2 - The Profile of Mood States (POMS) and its variations have been used in many real world contexts to assess individuals behavior and measure mood. Social Networks such as Twitter and Facebook are considered precious research sources of collecting user mood measurements. In particular, we are inspired in this paper, by recent work on the prediction of the stock market movement from attributes representing the public mood collected from Twitter. In this paper, we build a new prediction model for the same stock market problem based on single models combination. Our proposed approach to build such model is simultaneously promoting performance and interpretability. By interpretability, we mean the ability of a model to explain its predictions. We implement our approach using Ant Colony Optimization algorithm and we use customized Bayesian Classifiers as single models. We compare our approach against the best Bayesian single model, model learned from all the available data, bagging and boosting algorithms. Test results indicate that the proposed model for stock market prediction performs better than those derived by alternatives approaches.
AB - The Profile of Mood States (POMS) and its variations have been used in many real world contexts to assess individuals behavior and measure mood. Social Networks such as Twitter and Facebook are considered precious research sources of collecting user mood measurements. In particular, we are inspired in this paper, by recent work on the prediction of the stock market movement from attributes representing the public mood collected from Twitter. In this paper, we build a new prediction model for the same stock market problem based on single models combination. Our proposed approach to build such model is simultaneously promoting performance and interpretability. By interpretability, we mean the ability of a model to explain its predictions. We implement our approach using Ant Colony Optimization algorithm and we use customized Bayesian Classifiers as single models. We compare our approach against the best Bayesian single model, model learned from all the available data, bagging and boosting algorithms. Test results indicate that the proposed model for stock market prediction performs better than those derived by alternatives approaches.
UR - http://www.scopus.com/inward/record.url?scp=84893293043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893293043&partnerID=8YFLogxK
U2 - 10.1145/2492517.2500282
DO - 10.1145/2492517.2500282
M3 - Conference contribution
AN - SCOPUS:84893293043
SN - 9781450322409
T3 - Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
SP - 837
EP - 845
BT - Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
PB - Association for Computing Machinery
T2 - 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
Y2 - 25 August 2013 through 28 August 2013
ER -