Abstract
Hypertension is one of the most common age-related chronic disorders, and by predisposing individuals for heart failure, stroke, and kidney disease, it is a major source of morbidity and mortality. Its etiology remains enigmatic despite intense research efforts over many decades. By use of empirically well-constrained computer models describing the coupled function of the baroreceptor reflex and mechanics of the circulatory system, we demonstrate quantitatively that arterial stiffening seems sufficient to explain age-related emergence of hypertension. Specifically, the empirically observed chronic changes in pulse pressure with age and the impaired capacity of hypertensive individuals to regulate short-term changes in blood pressure arise as emergent properties of the integrated system. The results are consistent with available experimental data from chemical and surgical manipulation of the cardio-vascular system. In contrast to widely held opinions, the results suggest that primary hypertension can be attributed to a mechanogenic etiology without challenging current conceptions of renal and sympathetic nervous system function.
Original language | English |
---|---|
Article number | e1003634 |
Journal | PLoS Computational Biology |
Volume | 10 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 2014 |
Externally published | Yes |
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Modelling and Simulation
- Ecology
- Molecular Biology
- Genetics
- Cellular and Molecular Neuroscience
- Computational Theory and Mathematics