TY - GEN
T1 - ATTITUDE DETERMINATION AND CONTROL SYSTEM OF SHARJAH-SAT-1
AU - Ashour, M. B.
AU - Al-Kaabi, T.
AU - Karabulut, B.
AU - Aslan, A. R.
AU - Faroukh, Y.
AU - Fernini, I.
AU - Al-Naimiy, H. M.K.
AU - Kalemci, E.
N1 - Publisher Copyright:
© 2021 International Astronautical Federation, IAF. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Sharjah-Sat-1 is the first CubeSat mission of the Sharjah Academy for Astronomy, Space Sciences, and Technology (SAASST), in collaboration with Istanbul Technical University Space Systems Design and Test Laboratory (ITU-SSDTL) and Sabanci University (SU). The 3U+ CubeSat's primary payload is an improved X-Ray detector (iXRD), with the objectives of detecting hard X-rays from very bright X-ray sources, as well as studying the solar coronal holes. The secondary payload is a dual-camera system for Earth imaging. A dual-camera system will be used to image the SAASST building with a size of about 100m. The iXRD requires an attitude accuracy of 1 degree or better. Its full width at half maximum is 4.26 degrees with a linear response for the square collimator used. Every 1-degree pointing error will lead to 23% information loss. The ADCS subsystem of Sharjah-Sat-1 has been carefully determined and selected to ensure the success of its sophisticated mission, considering the constraints on the CubeSat standards with regards to size, mass, and power, the operational requirements of the mission, and space environmental disturbances expected throughout the mission's lifetime. Those disturbances are mostly encountered at low altitudes, and Sharjah-Sat-1 is planned to have a Sun-synchronous orbit with an altitude of about 500 km, not exceeding 600km. The planned launch date of the mission is June 2022. The paper presents a discussion and evaluation of the ADCS system in detail and its importance in terms of the achievement of the Sharjah-Sat-1 scientific mission (both star/Sun imaging and Earth-imaging), the hardware and the software implemented for active control, and the various attitude determination and control modes for different sensors and actuators' configurations.
AB - Sharjah-Sat-1 is the first CubeSat mission of the Sharjah Academy for Astronomy, Space Sciences, and Technology (SAASST), in collaboration with Istanbul Technical University Space Systems Design and Test Laboratory (ITU-SSDTL) and Sabanci University (SU). The 3U+ CubeSat's primary payload is an improved X-Ray detector (iXRD), with the objectives of detecting hard X-rays from very bright X-ray sources, as well as studying the solar coronal holes. The secondary payload is a dual-camera system for Earth imaging. A dual-camera system will be used to image the SAASST building with a size of about 100m. The iXRD requires an attitude accuracy of 1 degree or better. Its full width at half maximum is 4.26 degrees with a linear response for the square collimator used. Every 1-degree pointing error will lead to 23% information loss. The ADCS subsystem of Sharjah-Sat-1 has been carefully determined and selected to ensure the success of its sophisticated mission, considering the constraints on the CubeSat standards with regards to size, mass, and power, the operational requirements of the mission, and space environmental disturbances expected throughout the mission's lifetime. Those disturbances are mostly encountered at low altitudes, and Sharjah-Sat-1 is planned to have a Sun-synchronous orbit with an altitude of about 500 km, not exceeding 600km. The planned launch date of the mission is June 2022. The paper presents a discussion and evaluation of the ADCS system in detail and its importance in terms of the achievement of the Sharjah-Sat-1 scientific mission (both star/Sun imaging and Earth-imaging), the hardware and the software implemented for active control, and the various attitude determination and control modes for different sensors and actuators' configurations.
KW - Astrodynamics
KW - Attitude Control
KW - Attitude Determination
KW - CubeSat
UR - http://www.scopus.com/inward/record.url?scp=85127770298&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127770298&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85127770298
T3 - Proceedings of the International Astronautical Congress, IAC
BT - IAF Astrodynamics Symposium 2021 - Held at the 72nd International Astronautical Congress, IAC 2021
PB - International Astronautical Federation, IAF
T2 - IAF Astrodynamics Symposium 2021 at the 72nd International Astronautical Congress, IAC 2021
Y2 - 25 October 2021 through 29 October 2021
ER -