TY - GEN
T1 - Autoencoder-based Arrhythmia Detection using Synthetic ECG Generation Technique
AU - Nawaz, Ali
AU - Umar, Mubarak Albarka
AU - Shuaib, Khaled
AU - Ahmad, Amir
AU - Belkacem, Abdelkader Nasreddine
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - With a couple of million lives lost annually, cardiovascular disease (CVD) is the leading cause of death globally; about 80% of which are due to arrhythmia. Electrocardiogram (ECG) signals are important for arrhythmia diagnosis, researchers have used various ECG datasets in building arrhythmia detection systems to automate the manual time-consuming diagnostic process. However, existing datasets have class imbalance issues, and the traditional oversampling and undersampling techniques prove ineffective in handling the imbalance problem. We propose a novel approach to handling arrhythmia detection as an anomaly case to address this. In our proposed approach, we first use Generative Adversarial Networks (GANs) to synthetically generate normal training instances from the MIT-BIH arrhythmia dataset and then we use only the synthetically generated normal data to build the anomaly model using autoencoder (AE); employing the AE for unsupervised anomaly detection help in overcoming the GAN convergence issues. We evaluate the model using test data comprising both normal and abnormal samples that are not used by the GAN and compare its performance with other state-of-the-art works. The model achieved improved arrhythmia detection with an AUC-ROC of 0.6768 and an AUC-PR of 0.8537. While effectively tackling data scarcity and imbalance, this work also contributes valuable perspectives to enhance arrhythmia detection systems, providing a foundation for more reliable and adaptable solutions in healthcare.
AB - With a couple of million lives lost annually, cardiovascular disease (CVD) is the leading cause of death globally; about 80% of which are due to arrhythmia. Electrocardiogram (ECG) signals are important for arrhythmia diagnosis, researchers have used various ECG datasets in building arrhythmia detection systems to automate the manual time-consuming diagnostic process. However, existing datasets have class imbalance issues, and the traditional oversampling and undersampling techniques prove ineffective in handling the imbalance problem. We propose a novel approach to handling arrhythmia detection as an anomaly case to address this. In our proposed approach, we first use Generative Adversarial Networks (GANs) to synthetically generate normal training instances from the MIT-BIH arrhythmia dataset and then we use only the synthetically generated normal data to build the anomaly model using autoencoder (AE); employing the AE for unsupervised anomaly detection help in overcoming the GAN convergence issues. We evaluate the model using test data comprising both normal and abnormal samples that are not used by the GAN and compare its performance with other state-of-the-art works. The model achieved improved arrhythmia detection with an AUC-ROC of 0.6768 and an AUC-PR of 0.8537. While effectively tackling data scarcity and imbalance, this work also contributes valuable perspectives to enhance arrhythmia detection systems, providing a foundation for more reliable and adaptable solutions in healthcare.
KW - Arrhythmia
KW - Autoencoder
KW - Cardiovascular Diseases
KW - Data Synthesis
KW - ECG
KW - Generative Adversarial Network
KW - Healthcare
UR - http://www.scopus.com/inward/record.url?scp=85214980627&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85214980627&partnerID=8YFLogxK
U2 - 10.1109/EMBC53108.2024.10781537
DO - 10.1109/EMBC53108.2024.10781537
M3 - Conference contribution
AN - SCOPUS:85214980627
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
BT - 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
Y2 - 15 July 2024 through 19 July 2024
ER -