Automated In-Season Crop-Type Data Layer Mapping Without Ground Truth for the Conterminous United States Based on Multisource Satellite Imagery

Hui Li, Liping Di, Chen Zhang, Li Lin, Liying Guo, Eugene G. Yu, Zhengwei Yang

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Mapping nationwide in-season crop-type data is a significant and challenging task in agriculture remote sensing. The existing data product for U.S. crop-type planting, such as the Cropland Data Layer (CDL), falls short in facilitating near-real-time applications. This article designed a workflow aimed at automating the generation of in-season CDL-like products for USA. We methodically extracted trusted pixels as land cover labels from historical CDL datasets, employing Sentinel-2, Landsat 8, and Landsat-9 as sources for spectrum data, using the random forest classifier to conduct nationwide crop-type classifications. These classifications were integrated into the In-Season Crop Data Layer (ICDL) covering the entire Conterminous United States (CONUS). This approach facilitated the efficient generation of ICDLs for May, June, and July 2022, achieving satisfactory accuracy in July. Compared to Nebraska and Iowa ground truth data, ICDL achieved F1 scores of (0.911, 0.845) for corn and (0.959, 0.969) for soybean. Furthermore, ICDL's regional acreage estimates for major crops (corn, soybean, spring wheat, cotton, winter wheat, and rice) closely align with the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) figures, showing minimal variances as low as (0.01%, -0.68%, 0.19%, -4.39%, -5.78%, -1.28%). Notably, ICDL outperforms CDL in most assessments. This research consistently produces annual ICDLs from May to July that are readily accessible to the public in the iCrop system. Simultaneously, it presents an alternative technique for nationwide, in-season mapping of crop types.

Original languageEnglish
Article number4403214
Pages (from-to)1-14
Number of pages14
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume62
DOIs
Publication statusPublished - 2024
Externally publishedYes

Keywords

  • Cropland Data Layer (CDL)
  • In-Season Cropland Data Layer (ICDL)
  • Landsat
  • Sentinel-2
  • trusted pixel

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • General Earth and Planetary Sciences

Fingerprint

Dive into the research topics of 'Automated In-Season Crop-Type Data Layer Mapping Without Ground Truth for the Conterminous United States Based on Multisource Satellite Imagery'. Together they form a unique fingerprint.

Cite this