TY - GEN
T1 - Automatic partial face alignment in NIR video sequences
AU - Yang, Jimei
AU - Liao, Shengcai
AU - Li, Stan Z.
PY - 2009
Y1 - 2009
N2 - Face recognition with partial face images is an important problem in face biometrics. The necessity can arise in not so constrained environments such as in surveillance video, or portal video as provided in Multiple Biometrics Grand Challenge (MBGC). Face alignment with partial face images is a key step toward this challenging problem. In this paper, we present a method for partial face alignment based on scale invariant feature transform (SIFT). We first train a reference model using holistic faces, in which the anchor points and their corresponding descriptor subspaces are learned from initial SIFT keypoints and the relationships between the anchor points are also derived. In the alignment stage, correspondences between the learned holistic face model and an input partial face image are established by matching keypoints of the partial face to the anchor points of the learned face model. Furthermore, shape constraint is used to eliminate outlier correspondences and temporal constraint is explored to find more inliers. Alignment is finally accomplished by solving a similarity transform. Experiments on the MBGC near infrared video sequences show the effectiveness of the proposed method, especially when PCA subspace, shape and temporal constraint are utilized.
AB - Face recognition with partial face images is an important problem in face biometrics. The necessity can arise in not so constrained environments such as in surveillance video, or portal video as provided in Multiple Biometrics Grand Challenge (MBGC). Face alignment with partial face images is a key step toward this challenging problem. In this paper, we present a method for partial face alignment based on scale invariant feature transform (SIFT). We first train a reference model using holistic faces, in which the anchor points and their corresponding descriptor subspaces are learned from initial SIFT keypoints and the relationships between the anchor points are also derived. In the alignment stage, correspondences between the learned holistic face model and an input partial face image are established by matching keypoints of the partial face to the anchor points of the learned face model. Furthermore, shape constraint is used to eliminate outlier correspondences and temporal constraint is explored to find more inliers. Alignment is finally accomplished by solving a similarity transform. Experiments on the MBGC near infrared video sequences show the effectiveness of the proposed method, especially when PCA subspace, shape and temporal constraint are utilized.
KW - Face Alignment
KW - MBGC
KW - Partial Faces
KW - SIFT
UR - http://www.scopus.com/inward/record.url?scp=69949115152&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=69949115152&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-01793-3_26
DO - 10.1007/978-3-642-01793-3_26
M3 - Conference contribution
AN - SCOPUS:69949115152
SN - 3642017924
SN - 9783642017926
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 249
EP - 258
BT - Advances in Biometrics - Third International Conference, ICB 2009, Proceedings
T2 - 3rd International Conference on Advances in Biometrics, ICB 2009
Y2 - 2 June 2009 through 5 June 2009
ER -