TY - GEN
T1 - Axial heat conduction in parallel flow microchannel heat exchangers
AU - Mathew, B.
AU - Hegab, H.
PY - 2010
Y1 - 2010
N2 - This paper deals with the effect of axial heat conduction on the hot and cold fluid effectiveness of a balanced parallel flow microchannel heat exchanger. The ends of wall separating the fluids are subjected to Dirichlet boundary condition. This leads to heat transfer between the microscale heat exchanger and its surroundings and thereby leading to axial heat conduction through the wall separating the fluids. Three one dimensional energy equations were formulated, one for each of the fluids and one for the wall. These equations were solved using finite difference method. The effectiveness of the fluids depends on the NTU, axial heat conduction parameter, and the temperature of the ends of the wall separating the fluids. With decrease in temperature of the end wall at the inlet section of the fluids, while keeping the temp'erature of the other end wall constant, the effectiveness of the hot and cold fluid increased and decreased, respectively. When the temperature at the ends of the wall separating the heat exchanger is average of the inlet temperature of the fluids then there is no axial heat conduction through the heat exchanger. The effectiveness of a counter flow microchannel heat exchanger is better than that of a parallel flow microchannel heat exchanger subjected to similar operating conditions, i.e. axial heat conduction parameter and end wall temperatures.
AB - This paper deals with the effect of axial heat conduction on the hot and cold fluid effectiveness of a balanced parallel flow microchannel heat exchanger. The ends of wall separating the fluids are subjected to Dirichlet boundary condition. This leads to heat transfer between the microscale heat exchanger and its surroundings and thereby leading to axial heat conduction through the wall separating the fluids. Three one dimensional energy equations were formulated, one for each of the fluids and one for the wall. These equations were solved using finite difference method. The effectiveness of the fluids depends on the NTU, axial heat conduction parameter, and the temperature of the ends of the wall separating the fluids. With decrease in temperature of the end wall at the inlet section of the fluids, while keeping the temp'erature of the other end wall constant, the effectiveness of the hot and cold fluid increased and decreased, respectively. When the temperature at the ends of the wall separating the heat exchanger is average of the inlet temperature of the fluids then there is no axial heat conduction through the heat exchanger. The effectiveness of a counter flow microchannel heat exchanger is better than that of a parallel flow microchannel heat exchanger subjected to similar operating conditions, i.e. axial heat conduction parameter and end wall temperatures.
UR - http://www.scopus.com/inward/record.url?scp=77954260603&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77954260603&partnerID=8YFLogxK
U2 - 10.1115/IMECE2009-11775
DO - 10.1115/IMECE2009-11775
M3 - Conference contribution
AN - SCOPUS:77954260603
SN - 9780791843826
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings
SP - 1149
EP - 1158
BT - Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2009, IMECE 2009
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009
Y2 - 13 November 2009 through 19 November 2009
ER -