Bio-desalination of brackish and seawater using halophytic algae

Endalkachew Sahle-Demessie, Ashraf Aly Hassan, Amro El Badawy

Research output: Contribution to journalArticlepeer-review

62 Citations (Scopus)


Global demand for water is rising. A sustainable and energy efficient approach is needed to desalinate brackish sources for agricultural and municipal water use. Genetic variation among two algae species, Scenedesmus species (S. sp.)and Chlorella vulgaris (C. vulgaris), in their tolerance and uptake of salt (NaCl)was examined for potential bio-desalination of brackish water. Salt-tolerant hyper-accumulators were evaluated in a batch photobioreactors over salinity concentration ranging from 2 g/L to 20 g/L and different nutrient composition for their growth rate and salt-uptake. During algae growth phase, the doubling time varied between 0.63 and 1.81 days for S. sp. and 3.1 to 5.9 for C. vulgaris. The initial salt-uptake followed pseudo first order kinetics where the rate constant ranged between −3.58 and −7.68 day−1 reaching up to 30% in a single cycle. The halophyte algae S. sp. and C. vulgaris that were selected for pilot-scale studies here represent a promising new method for desalination of brackish waters. Halophytic technologies combined with the potential use of algae for biofuel, which offsets energy demand, can provide a sustainable solution for clean, affordable water and energy.

Original languageEnglish
Pages (from-to)104-113
Number of pages10
Publication statusPublished - Sept 1 2019


  • Bio-desalination
  • Brackish water
  • Halophytic algae
  • Photobioreactor

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • General Materials Science
  • Water Science and Technology
  • Mechanical Engineering


Dive into the research topics of 'Bio-desalination of brackish and seawater using halophytic algae'. Together they form a unique fingerprint.

Cite this