Bioepoxy based hybrid composites from nano-fillers of chicken feather and lignocellulose Ceiba Pentandra

Sanjay Mavinkere Rangappa, Jyotishkumar Parameswaranpillai, Suchart Siengchin, Mohammad Jawaid, Togay Ozbakkaloglu

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

In this work, fillers of waste chicken feather and abundantly available lignocellulose Ceiba Pentandra bark fibers were used as reinforcement with Biopoxy matrix to produce the sustainable composites. The aim of this work was to evaluate the mechanical, thermal, dimensional stability, and morphological performance of waste chicken feather fiber/Ceiba Pentandra bark fiber filler as potential reinforcement in carbon fabric-layered bioepoxy hybrid composites intended for engineering applications. These composites were prepared by a simple, low cost and user-friendly fabrication methods. The mechanical (tensile, flexural, impact, hardness), dimensional stability, thermal stability, and morphological properties of composites were characterized. The Ceiba Pentandra bark fiber filler-reinforced carbon fabric-layered bioepoxy hybrid composites display better mechanical performance compared to chicken feather fiber/Ceiba Pentandra bark fiber reinforced carbon fabrics layered bioepoxy hybrid composites. The Scanning electron micrographs indicated that the composites exhibited good adhesion at the interface of the reinforcement material and matrix system. The thermogravimetric studies revealed that the composites possess multiple degradation steps, however, they are stable up to 300 °C. The thermos-mechanical studies showed good dimensional stability of the composites. Both studied composites display better thermal and mechanical performance compared to neat bioepoxy or non-bioepoxy thermosets and are suitable for semi-structural applications.

Original languageEnglish
Article number397
JournalScientific reports
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2022
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Bioepoxy based hybrid composites from nano-fillers of chicken feather and lignocellulose Ceiba Pentandra'. Together they form a unique fingerprint.

Cite this