Ca2+ entry, efflux and release in smooth muscle.

A. Matthew, A. Shmygol, Susan Wray

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)


Control of smooth muscle is vital for health. The major route to contraction is a rise in intracellular [Ca2+], determined by the entry and efflux of Ca2+ and release and re-uptake into the sarcoplasmic reticulum (SR). We review these processes in myometrium, to better understand excitation-contraction coupling and develop strategies for preventing problematic labours. The main mechanism of elevating [Ca2+] is voltage-gated L-type channels, due to pacemaker activity, which can be modulated by agonists. The rise of [Ca2+] produces Ca-calmodulin and activates MLCK. This phosphorylates myosin and force results. Without Ca2+ entry uterine contraction fails. The Na/Ca exchanger (NCX) and plasma membrane Ca-ATPase (PMCA) remove Ca2+, with contributions of 30% and 70% respectively. Studies with PMCA-4 knockout mice show that it contributes to reducing [Ca2+] and relaxation. The SR contributes to relaxation by vectorially releasing Ca2+ to the efflux pathways, and thereby increasing their rates. Agonists binding produces IP3 which can release Ca from the SR but inhibition of SR Ca2+ release increases contractions and Ca2+ transients. It is suggested that SR Ca2+ targets K+ channels on the surface membrane and thereby feedback to inhibit excitability and contraction.

Original languageEnglish
Pages (from-to)617-624
Number of pages8
JournalBiological Research
Issue number4
Publication statusPublished - 2004
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry,Genetics and Molecular Biology
  • General Agricultural and Biological Sciences


Dive into the research topics of 'Ca2+ entry, efflux and release in smooth muscle.'. Together they form a unique fingerprint.

Cite this