Abstract
The present study aimed at utilization of aqueous extract and fiber-rich extraction residue of defatted date seed powder (DDSP) as functional ingredient for improving the quality attributes of biscuit dough. Previously optimized microwave-assisted extraction (MAE) was used to recover the bioactive compounds from small, medium and large sized DDSP particles. Extracts and 2.5 %, 5 % and 7.5 % substitution levels of fiber-rich residue were incorporated in dough formulations, before rheological, physical and bioactive properties of dough were investigated. Smallest particles at 7.5 % substitution level resulted in the highest storage (G′) and loss moduli (G″) and lowest creep strain showing the highest resistance to deformation in the dough. Hardness increased with decreasing particle size and increasing substitution level of extraction residue. Highest substitution level with smallest particle size resulted in the darkest dough. Highest total phenolic content (TPC) of 0.60 mg GAE/g was found in the dough with 7.5 % substitution level by medium sized particles. The highest DPPH radical scavenging activity and Ferric reducing antioxidant power (FRAP) values were 2.00 mmol TE/g and 0.34 mmol TE/g, respectively, for small sized particles and 7.5 % substitution level of extraction residue. Substitution of DDSP fiber-rich extraction residue altered the structural arrangement of gluten in the dough.
Original language | English |
---|---|
Article number | 100395 |
Journal | Food Structure |
Volume | 42 |
DOIs | |
Publication status | Published - Oct 2024 |
Keywords
- Date by-products
- Dough structure
- Extraction residue
- Functional food
- Rheological behavior
ASJC Scopus subject areas
- Food Science
- Bioengineering
- Applied Microbiology and Biotechnology