TY - GEN
T1 - Community detection in social networks through similarity virtual networks
AU - Alfalahi, Kanna
AU - Atif, Yacine
AU - Harous, Saad
PY - 2013
Y1 - 2013
N2 - Smart marketing models could utilize communities within the social Web to target advertisements. However, providing accurate community partitions in a reasonable time is challenging for current online large-scale social networks. In this paper, we propose an approach to enhance community detection in online social networks using node similarity techniques. We apply these techniques on unweighted social networks to detect community structure. Our proposed approach creates a virtual network based on the original social network. Virtual edges are added during this pre-processing step based on nodes' similarity in the original social network. Hence, a virtual link is established between any two similar nodes. Then the landmark CNM algorithm is applied on the generated virtual network to detect communities. This approach, labelled Similarity-CNM is expected to further maximize the quality of the inferred communities in terms of modularity and detection speed. Our experimental evaluation study asserts these gains, which accuracy is supported by a study based on Normalized Mutual Information Measure to determine how similar are the actual communities in the original network and the ones found by the proposed approach in this paper.
AB - Smart marketing models could utilize communities within the social Web to target advertisements. However, providing accurate community partitions in a reasonable time is challenging for current online large-scale social networks. In this paper, we propose an approach to enhance community detection in online social networks using node similarity techniques. We apply these techniques on unweighted social networks to detect community structure. Our proposed approach creates a virtual network based on the original social network. Virtual edges are added during this pre-processing step based on nodes' similarity in the original social network. Hence, a virtual link is established between any two similar nodes. Then the landmark CNM algorithm is applied on the generated virtual network to detect communities. This approach, labelled Similarity-CNM is expected to further maximize the quality of the inferred communities in terms of modularity and detection speed. Our experimental evaluation study asserts these gains, which accuracy is supported by a study based on Normalized Mutual Information Measure to determine how similar are the actual communities in the original network and the ones found by the proposed approach in this paper.
KW - Algorithms
KW - Community detection
KW - Social web
UR - http://www.scopus.com/inward/record.url?scp=84893239378&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893239378&partnerID=8YFLogxK
U2 - 10.1145/2492517.2500299
DO - 10.1145/2492517.2500299
M3 - Conference contribution
AN - SCOPUS:84893239378
SN - 9781450322409
T3 - Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
SP - 1116
EP - 1123
BT - Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
PB - Association for Computing Machinery
T2 - 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
Y2 - 25 August 2013 through 28 August 2013
ER -