TY - GEN
T1 - Computational fluid dynamics based investigation of the performance of hybrid heat sinks
AU - Alkhazaleh, Anas
AU - Selim, Mohamed
AU - Alnaimat, Fadi
AU - Mathew, Bobby
N1 - Publisher Copyright:
Copyright © 2021 by ASME
PY - 2021
Y1 - 2021
N2 - This article discusses the mathematical modeling of a straight microchannel heat sink, embedded with pin-fins, for purposes of liquid cooling of microelectronic chips. The influence of three different geometrical parameters, pin fins' diameter, pitch, and hydraulic diameter, on the heat sinks performance is studied. The studies are performed for Reynolds numbers varying from 250 to 2000, and the results are quantified based on thermal resistance and pressure drop. The heat sinks embedded with pin fins have better performance in terms of thermal resistance but at the same time have higher pressure drop. Studies revealed that increasing the pin fins' diameter, pitch, and hydraulic diameter have an influence on the thermal resistance; the thermal resistance is found to be decreasing with increasing these parameters for the same Reynolds number. For the cases studied, the reduction in thermal resistance of straight microchannels embedded with pin fins varied from 18% to 60% compared with that of traditional straight microchannels for different heat sinks configurations and Reynolds number. On the other hand, the pressure drop is increasing with an increase in pin fins' diameter and pitch, while it is found to be decreasing with increasing the hydraulic diameter.
AB - This article discusses the mathematical modeling of a straight microchannel heat sink, embedded with pin-fins, for purposes of liquid cooling of microelectronic chips. The influence of three different geometrical parameters, pin fins' diameter, pitch, and hydraulic diameter, on the heat sinks performance is studied. The studies are performed for Reynolds numbers varying from 250 to 2000, and the results are quantified based on thermal resistance and pressure drop. The heat sinks embedded with pin fins have better performance in terms of thermal resistance but at the same time have higher pressure drop. Studies revealed that increasing the pin fins' diameter, pitch, and hydraulic diameter have an influence on the thermal resistance; the thermal resistance is found to be decreasing with increasing these parameters for the same Reynolds number. For the cases studied, the reduction in thermal resistance of straight microchannels embedded with pin fins varied from 18% to 60% compared with that of traditional straight microchannels for different heat sinks configurations and Reynolds number. On the other hand, the pressure drop is increasing with an increase in pin fins' diameter and pitch, while it is found to be decreasing with increasing the hydraulic diameter.
KW - Hybrid Heat Sink
KW - Pin Fins
KW - Pressure Drop
KW - Straight Microchannel
KW - Thermal Resistance
UR - http://www.scopus.com/inward/record.url?scp=85112106723&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85112106723&partnerID=8YFLogxK
U2 - 10.1115/HT2021-63099
DO - 10.1115/HT2021-63099
M3 - Conference contribution
AN - SCOPUS:85112106723
T3 - Proceedings of the ASME 2021 Heat Transfer Summer Conference, HT 2021
BT - Proceedings of the ASME 2021 Heat Transfer Summer Conference, HT 2021
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2021 Heat Transfer Summer Conference, HT 2021
Y2 - 16 June 2021 through 18 June 2021
ER -