Concentration of rutin model solutions from their mixtures with glucose using ultrafiltration

Swallow Wei, Md M. Hossain, Zaid S. Saleh

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Separation of polyphenolic phytochemical compounds from their mixtures with sugars is necessary to produce an added-value sugar-reduced extract with high biological activity from fruit juice processing industry waste streams. The separation characteristics of a binary mixture of rutin and glucose using a Pellicon-2 regenerated cellulose ultrafiltration membrane with an area of 0.1 m2 having nominal MWCO of 1,000 Da were investigated, to demonstrate the separation of phenolic compounds from sugars. The effects of the operating variables-transmembrane pressure, feed solution temperature and pH, initial feed concentration and feed flow rate-on the permeate flux and enrichment of rutin, were determined. The permeate flux increased with the increase in transmembrane pressure up to a certain limit and after that the flux remained more or less constant. The optimum transmembrane pressure was within 4-5 bar. The flux increased with the increase in feed solution temperature because of reduced feed viscosity, and better solubility. The concentration of rutin was optimum at lower temperature (30°C), with an enrichment factor of 1.3. The effect of pH on permeate flux was less obvious. Lowering the feed solution pH increased the retention of rutin and the optimum separation was obtained within pH 3-4. The permeate flux decreased with the increase in feed concentration of rutin (concentration range 0.1-0.5 g/L). The enrichment of rutin was significant in the glucose concentration range 0.35-0.5 g/L. The feed flow rate had a significant effect on the flux and separation characteristics. Higher cross-flow through the membrane reduced the fouling by providing a shear force to sweep away deposited materials from the membrane surface. At high feed flow rate, more rutin was retained by the membrane with less sugar permeating through. The optimum feed flow rate was 1.5 L/min. For the separation of rutin (in the retentate) and glucose (in the permeate), the best results were obtained at rutin enrichment of 2.9 and recovery 72.5%, respectively. The performance of this system was further improved by operating it in a diafiltration mode, in which only approx. 11% of glucose remained in the retentate.

Original languageEnglish
Pages (from-to)672-690
Number of pages19
JournalInternational journal of molecular sciences
Volume11
Issue number2
DOIs
Publication statusPublished - Feb 2010

Keywords

  • Concentration factor
  • Fouling
  • Polyphenols
  • Rutin
  • Sugar
  • Ultrafiltration

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Concentration of rutin model solutions from their mixtures with glucose using ultrafiltration'. Together they form a unique fingerprint.

Cite this