TY - JOUR
T1 - Constructing S-scheme heterojunction of carbon nitride nanorods (g-CNR) assisted trimetallic CoAlLa LDH nanosheets with electron and holes moderation for boosting photocatalytic CO2 reduction under solar energy
AU - Khan, Azmat Ali
AU - Tahir, Muhammad
AU - Mohamed, Abdul Rahman
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Well-designed template free synthesis of one dimensional (1D) graphitic carbon nitride nanorods (g-CNR) coupled with two dimensional (2D) trimetallic CoAlLa-LDH to construct 1D/2D interface heterostructures with strong electrostatic interactions between positively charged 2D LDH sheets and negatively charged 1D g-CNR has been investigated. The lanthanum doped CoAlLa-LDH with unsaturated metal centers has increased reductive sites and oxygen vacancies that led to enhanced charge separation. The 1D g-CNR provides extra active reaction sites for the photocatalytic reaction and permit fast photogenerated charge carriers separation across the interface. The coupling of g-CNR and CoAlLa-LDH with excellent properties resulted in 1D/2D interface heterojunction with S-scheme mechanism for charge carrier transfer by maintaining and effectively utilizing useful charge carriers. The 1D/2D g-CNR/CoAlLa-LDH showed remarkable photocatalytic performance for CO2 reduction with H2O resulting in maximum CO and CH4 production of 17.85 and 14.66 µmole, respectively. The photocatalytic bireforming (BRM) of methane resulted in the production of syngas (CO/H2) with 12.32 and 5.96 µmole of CO and H2, respectively. The enhancement of photocatalytic activity is mainly due to the excellent interfacial contact of g-CNR with ternary metallic CoAlLa-LDH, thus resulting in better transfer and separation of photogenerated charge carriers due to the formation of S-scheme heterojunction. Additionally, the optimum g-CNR/CoAlLa-LDH nanocomposite acquired high photostability after consecutive experimental runs with no apparent variation. The spent catalyst showed no change in morphology, thus proving further good stability of the g-CNR/CoAlLa-LDH photocatalyst. The findings of this work would be beneficial to design template free heterojunction for photocatalytic CO2 reduction and other solar energy application.
AB - Well-designed template free synthesis of one dimensional (1D) graphitic carbon nitride nanorods (g-CNR) coupled with two dimensional (2D) trimetallic CoAlLa-LDH to construct 1D/2D interface heterostructures with strong electrostatic interactions between positively charged 2D LDH sheets and negatively charged 1D g-CNR has been investigated. The lanthanum doped CoAlLa-LDH with unsaturated metal centers has increased reductive sites and oxygen vacancies that led to enhanced charge separation. The 1D g-CNR provides extra active reaction sites for the photocatalytic reaction and permit fast photogenerated charge carriers separation across the interface. The coupling of g-CNR and CoAlLa-LDH with excellent properties resulted in 1D/2D interface heterojunction with S-scheme mechanism for charge carrier transfer by maintaining and effectively utilizing useful charge carriers. The 1D/2D g-CNR/CoAlLa-LDH showed remarkable photocatalytic performance for CO2 reduction with H2O resulting in maximum CO and CH4 production of 17.85 and 14.66 µmole, respectively. The photocatalytic bireforming (BRM) of methane resulted in the production of syngas (CO/H2) with 12.32 and 5.96 µmole of CO and H2, respectively. The enhancement of photocatalytic activity is mainly due to the excellent interfacial contact of g-CNR with ternary metallic CoAlLa-LDH, thus resulting in better transfer and separation of photogenerated charge carriers due to the formation of S-scheme heterojunction. Additionally, the optimum g-CNR/CoAlLa-LDH nanocomposite acquired high photostability after consecutive experimental runs with no apparent variation. The spent catalyst showed no change in morphology, thus proving further good stability of the g-CNR/CoAlLa-LDH photocatalyst. The findings of this work would be beneficial to design template free heterojunction for photocatalytic CO2 reduction and other solar energy application.
KW - Bireforming of methane
KW - g-CN nanorods
KW - Photocatalytic CO reduction
KW - S-scheme heterojunction
KW - Trimetallic layered double hydroxide (LDH)
UR - http://www.scopus.com/inward/record.url?scp=85120495663&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120495663&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2021.133693
DO - 10.1016/j.cej.2021.133693
M3 - Article
AN - SCOPUS:85120495663
SN - 1385-8947
VL - 433
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 133693
ER -