Construction of g-C3N4/MoS2/SnO2 hybrid as 2D/2D/1D architecture for counter electrode of dye-sensitized solar cells and photodegradation of pharmaceutical drugs from wastewater

D. Karthigaimuthu, Murad Alsawalha, Aya A.H. Mourad, Anuja A. Yadav, Yuvaraj M. Hunge, Elangovan Thangavel, Abdel Hamid I. Mourad

Research output: Contribution to journalArticlepeer-review

Abstract

In this work, we developed a heterogeneous g-C3N4/MoS2/SnO2 hybrid catalyst by a facile hydrothermal technique. A prepared hybrid was characterized and validated by XRD, FTIR and XPS. The BET analysis confirms that the surface area and pore volume values ​​of g-C3N4/MoS2/SnO2 (65.8 m2 g-1, 0.29 cm3 g-1) are higher than those of g-C3N4. Further FE-SEM and HR-TEM analyses clearly show that self-assembled SnO2 nanorods are randomly and freely dispersed in g-C3N4 and MoS2 nanosheets as formed 2D/2D/1D nanostructure. The prepared hybrid served as counter electrodes (CE) for the fabrication of dye-sensitized solar cells (DSSC). The developed DSSC has Jsc, and Voc parameter values of 8.6 mA/cm2 and 0.558 V, then the resulting FF % and PCE % values were 0.7024 % and 3.38 %, respectively. The fabricated solar cells based on g-C3N4/MoS2/SnO2 hybrid maintain 90 % of PCE % after 15 days. The photocatalytic function of the produced samples was tested against the ciprofloxacin (CIP) and ibuprofen (IBU) pollutants degradation under UV–Vis light irradiation and the g-C3N4/MoS2/SnO2 hybrid catalyst showed higher photocatalytic degradation activity of 96 and 95 % towards CIP and IBU, respectively, which have higher efficiency than other synthesized samples within 80 and 100 min. The proposed photocatalytic mechanism of the constructed g-C3N4/MoS2/SnO2 hybrid system is based on 2D/2D/1D Z-scheme synergy, and further Z-scheme synergy was investigated by a scavenger test and ESR studies. The high charge separation efficiency in the photocatalyst is responsible for the improved degradation efficiency, which is achieved using g-C3N4 and SnO2 as the reducing agents and MoS2 as the co-catalyst and further studied its stability and reusability. This work effectively provides insight into the construction of a novel and extremely enforceable Z-scheme for UV–Vis light-based photocatalysts to degrade pharmaceutical pollutants from wastewater and low-cost energy harvesting for renewable energy.

Original languageEnglish
Article number100771
JournalApplied Surface Science Advances
Volume27
DOIs
Publication statusPublished - Jun 2025

Keywords

  • Ciprofloxacin (CIP)
  • DSSC
  • g-CN/MoS/SnO hybrid
  • Ibuprofen (IBU)
  • Photocatalytic activity
  • Z-scheme

ASJC Scopus subject areas

  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Construction of g-C3N4/MoS2/SnO2 hybrid as 2D/2D/1D architecture for counter electrode of dye-sensitized solar cells and photodegradation of pharmaceutical drugs from wastewater'. Together they form a unique fingerprint.

Cite this