Correlated stochastic epidemic model for the dynamics of SARS-CoV-2 with vaccination

Tahir Khan, Roman Ullah, Basem Al Alwan, Youssef El-Khatib, Gul Zaman

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we propose a mathematical model to describe the influence of the SARS-CoV-2 virus with correlated sources of randomness and with vaccination. The total human population is divided into three groups susceptible, infected, and recovered. Each population group of the model is assumed to be subject to various types of randomness. We develop the correlated stochastic model by considering correlated Brownian motions for the population groups. As the environmental reservoir plays a weighty role in the transmission of the SARS-CoV-2 virus, our model encompasses a fourth stochastic differential equation representing the reservoir. Moreover, the vaccination of susceptible is also considered. Once the correlated stochastic model, the existence and uniqueness of a positive solution are discussed to show the problem’s feasibility. The SARS-CoV-2 extinction, as well as persistency, are also examined, and sufficient conditions resulted from our investigation. The theoretical results are supported through numerical/graphical findings.

Original languageEnglish
Article number16105
JournalScientific reports
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Correlated stochastic epidemic model for the dynamics of SARS-CoV-2 with vaccination'. Together they form a unique fingerprint.

Cite this