Cyclic Solid-State Multiple Phase Changes with Tuned Photoemission in a Gold Thiolate Coordination Polymer

Oleksandra Veselska, Shefali Vaidya, Chinmoy Das, Nathalie Guillou, Pierre Bordet, Alexandra Fateeva, François Toche, Rodica Chiriac, Gilles Ledoux, Stefan Wuttke, Satoshi Horike, Aude Demessence

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

The discovery of a universal memory that exhibits fast access speed, high-density storage, and non-volatility has fuelled research into phase-change materials over the past decades. In spite of the efficiency of the inorganic chalcogenides for phase-change random access memory (PCRAM), they still have some inherent drawbacks, such as high temperature required for phase change and difficulty to control the domain size of the phase change, because of their brittleness. Here we present a AuI–thiolate coordination polymer which undergoes two successive phase changes on application of mild heating (<200 °C) from amorphous-to-crystalline1-to-crystalline2 phases. These transitions are reversible upon soft hand grinding. More importantly, each phase exhibits different photoluminescent properties for an efficient optical read-out. We believe that the ability of the AuI–thiolate coordination polymer to have reversible phase changes under soft conditions and at the same time to display distinct optical signals, can pave the way for the next generation of PCRAM.

Original languageEnglish
Article numbere202117261
JournalAngewandte Chemie - International Edition
Volume61
Issue number14
DOIs
Publication statusPublished - Mar 28 2022
Externally publishedYes

Keywords

  • Coordination Polymers
  • Gold(I)
  • Luminescence
  • Phase Change

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry

Fingerprint

Dive into the research topics of 'Cyclic Solid-State Multiple Phase Changes with Tuned Photoemission in a Gold Thiolate Coordination Polymer'. Together they form a unique fingerprint.

Cite this