Dapagliflozin reduces the amplitude of shortening and Ca2+ transient in ventricular myocytes from streptozotocin-induced diabetic rats

N. N. Hamouda, V. Sydorenko, M. A. Qureshi, J. M. Alkaabi, M. Oz, F. C. Howarth

Research output: Contribution to journalArticlepeer-review

46 Citations (Scopus)

Abstract

In the management of type 2 diabetes mellitus, Dapagliflozin (DAPA) is a newly introduced selective sodium-glucose co-transporter 2 inhibitor which promotes renal glucose excretion. Little is known about the effects of DAPA on the electromechanical function of the heart. This study investigated the effects of DAPA on ventricular myocyte shortening and intracellular Ca2+ transport in streptozotocin (STZ)-induced diabetic rats. Shortening, Ca2+ transients, myofilament sensitivity to Ca2+ and sarcoplasmic reticulum Ca2+, and intracellular Ca2+ current were measured in isolated rats ventricular myocytes by video edge detection, fluorescence photometry, and whole-cell patch-clamp techniques. Diabetes was characterized in STZ-treated rats by a fourfold increase in blood glucose (440 ± 25 mg/dl, n = 21) compared to Controls (98 ± 2 mg/dl, n = 19). DAPA reduced the amplitude of shortening in Control (76.68 ± 2.28 %, n = 37) and STZ (76.58 ± 1.89 %, n = 42) ventricular myocytes, and reduced the amplitude of the Ca2+ transients in Control and STZ ventricular myocytes with greater effects in STZ (71.45 ± 5.35 %, n = 16) myocytes compared to Controls (92.01 ± 2.72 %, n = 17). Myofilament sensitivity to Ca2+ and sarcoplasmic reticulum Ca2+ were not significantly altered by DAPA in either STZ or Control myocytes. L-type Ca2+ current was reduced in STZ myocytes compared to Controls and was further reduced by DAPA. In conclusion, alterations in the mechanism(s) of Ca2+ transport may partly underlie the negative inotropic effects of DAPA in ventricular myocytes from STZ-treated and Control rats.

Original languageEnglish
Pages (from-to)57-68
Number of pages12
JournalMolecular and cellular biochemistry
Volume400
Issue number1-2
DOIs
Publication statusPublished - Feb 2014

Keywords

  • Dapagliflozin
  • Diabetes mellitus
  • SGLT2 inhibitors
  • Streptozotocin-induced diabetic rats
  • Ventricular myocytes

ASJC Scopus subject areas

  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Dapagliflozin reduces the amplitude of shortening and Ca2+ transient in ventricular myocytes from streptozotocin-induced diabetic rats'. Together they form a unique fingerprint.

Cite this