TY - JOUR
T1 - Delayed acquisition of somatic hypermutations in repopulated IgD+CD27+ memory B cell receptors after rituximab treatment
AU - Muhammad, Khalid
AU - Roll, Petra
AU - Einsele, Hermann
AU - Dörner, Thomas
AU - Tony, Hans Peter
PY - 2009/8
Y1 - 2009/8
N2 - Objective. Transient B cell depletion by rituximab has been used with clinical efficacy in the treatment of patients with rheumatoid arthritis (RA). Previous studies of B cell repopulation have shown long-term numerical reduction in memory B cells. Non-class-switched IgD+CD27+ memory B cells, in particular, repopulate slowly. This study was undertaken to determine whether mutational acquisition in individual B cell receptors in repopulating class-switched and non-class-switched memory B cells is affected by rituximab. Methods. Cells obtained from 16 RA patients, 4 healthy donors, and 3 patients who underwent allogeneic stem cell transplantation (ASCT) were analyzed using single B cell sorting followed by nested polymerase chain reaction and Ig VH3 sequencing. Results. There was a delayed acquisition of mutations in Ig receptors of IgD+ memory B cells over a period of 6 years after a single course of rituximab. One year after rituximab treatment, 84% of single repopulating IgD+CD27+ B cells were unmutated, and no highly mutated Ig receptors were found (compared with 52% before therapy). Over time, increasing numbers of mutations were detected. Even 6 years after rituximab treatment, however, mutations in IgD+ memory B cells were still significantly reduced. In contrast, class-switched memory B cells repopulated with quantitatively normal mutations. In comparison, in patients undergoing ASCT, IgD+ memory cells repopulated earlier with higher mutations in Ig receptors. Conclusion. Our data suggest that IgD+ memory B cells are particularly susceptible to the effects of rituximab, with delayed acquisition of mutations in their Ig receptors still evident 6 years after a single course of rituximab. Our findings indicate that these cells have different requirements for mutational acquisition compared with class-switched memory B cells.
AB - Objective. Transient B cell depletion by rituximab has been used with clinical efficacy in the treatment of patients with rheumatoid arthritis (RA). Previous studies of B cell repopulation have shown long-term numerical reduction in memory B cells. Non-class-switched IgD+CD27+ memory B cells, in particular, repopulate slowly. This study was undertaken to determine whether mutational acquisition in individual B cell receptors in repopulating class-switched and non-class-switched memory B cells is affected by rituximab. Methods. Cells obtained from 16 RA patients, 4 healthy donors, and 3 patients who underwent allogeneic stem cell transplantation (ASCT) were analyzed using single B cell sorting followed by nested polymerase chain reaction and Ig VH3 sequencing. Results. There was a delayed acquisition of mutations in Ig receptors of IgD+ memory B cells over a period of 6 years after a single course of rituximab. One year after rituximab treatment, 84% of single repopulating IgD+CD27+ B cells were unmutated, and no highly mutated Ig receptors were found (compared with 52% before therapy). Over time, increasing numbers of mutations were detected. Even 6 years after rituximab treatment, however, mutations in IgD+ memory B cells were still significantly reduced. In contrast, class-switched memory B cells repopulated with quantitatively normal mutations. In comparison, in patients undergoing ASCT, IgD+ memory cells repopulated earlier with higher mutations in Ig receptors. Conclusion. Our data suggest that IgD+ memory B cells are particularly susceptible to the effects of rituximab, with delayed acquisition of mutations in their Ig receptors still evident 6 years after a single course of rituximab. Our findings indicate that these cells have different requirements for mutational acquisition compared with class-switched memory B cells.
UR - http://www.scopus.com/inward/record.url?scp=68049100305&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=68049100305&partnerID=8YFLogxK
U2 - 10.1002/art.24722
DO - 10.1002/art.24722
M3 - Article
C2 - 19644860
AN - SCOPUS:68049100305
SN - 0004-3591
VL - 60
SP - 2284
EP - 2293
JO - Arthritis and Rheumatism
JF - Arthritis and Rheumatism
IS - 8
ER -