Design and fabrication of a microstrip triplexer with wide flat channels for multi-band 5G applications

Salah I. Yahya, Farid Zubir, Mohammed Abdel Hafez, Lewis Nkenyereye, Muhammad Akmal Chaudhary, Maher Assaad, Leila Nouri, Abbas Rezaei, Noorlindawaty Md Jizat

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, a new microstrip triplexer is designed to work at 2.5 GHz, 4.4 GHz and 6 GHz for mid-band 5G applications. All channels are flat with three low group delays (GDs) of 0.84 ns, 0.75 ns and 0.49 ns, respectively. Compared to the previously reported works, the proposed triplexer has the minimum group delay. The designed triplexer has 18.2%, 13.7%, 23.6% fractional bandwidths (FBW%) at 2.5 GHz, 4.4 GHz and 6 GHz, respectively. The obtained insertion losses (ILs) are low at all channels. These features are obtained without a noticeable increase in the overall size. A novel and simple resonator is used to design the proposed triplexer, which includes two pairs of coupled lines combined with a shunt stub. A perfect mathematical analysis is performed to find the resonator behavior and the layout optimization. The type of shunt stub is determined mathematically. Also, the smallness or largeness of some important physical dimensions is determined using the proposed mathematical analysis. Finally, the designed triplexer is fabricated and measured, where the measurement results verify the simulations.

Original languageEnglish
Article numbere0302634
JournalPLoS ONE
Volume19
Issue number5 May
DOIs
Publication statusPublished - May 2024

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Design and fabrication of a microstrip triplexer with wide flat channels for multi-band 5G applications'. Together they form a unique fingerprint.

Cite this