TY - JOUR
T1 - Development of pH-Controlled Aluminum-Based Polymeric Gel for Conformance Control in Sour Gas Reservoirs
AU - Shamlooh, Mohamed
AU - Hussein, Ibnelwaleed A.
AU - Nasser, Mustafa S.
AU - Magzoub, Musaab
AU - Salehi, Saeed
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/9/29
Y1 - 2020/9/29
N2 - Excessive water production from natural gas reservoirs is a main challenge facing the industry nowadays. Polymeric gelants have been widely applied to seal the water production zones, leading to a more feasible production operation. Nevertheless, conventional treatments fail in reservoirs characterized with the presence of sour gases. In this paper, aluminum-based salts are investigated as potential replacement for the conventional chromium acetate as crosslinkers for polyacrylamide (PAM), where aluminum has the advantage of being more environment-friendly besides its abundance. The investigation covers the whole pH range and examines the rheological behavior of the mature gels in the temperature range between 25 and 100 °C. While chromium acetate was proven to be sensitive to the presence of sour gases, namely, CO2 and H2S, because of the inability to produce a stable gel at the acidic conditions, this paper presents aluminum-based crosslinkers that are more tolerable toward high acidity. Unlike the conventional crosslinkers, the gelation rate in aluminum acetate and aluminum aminoacetate systems was found to decrease with the increase in pH. Both the crosslinkers succeeded in producing a strong gel with a storage modulus of more than 2000 Pa. Moreover, this study relates the physical stability of the colloidal aluminum crosslinkers with the viscoelastic behavior of the mature gel. The results reveal that aluminum acetate, among the screened salts, has a controllable gelation time at pH conditions between 3.5 and 8.5 and is the most stable in the temperature range 25-100 °C. PAM/AlAc system has a gelation time of around 50 min at 75 °C making it suitable for near-wellbore treatments, while the gelation time increased to 80 min upon increasing the pH of the system from 4.1 to 4.6. Moreover, the system showed good stability in saline conditions with NaCl concentration of up to 50,000 ppm. Scanning electron microscopy of freeze-dried samples proved the uniform distribution of colloidal crosslinkers and showed sheets wrapping around the colloidal particles. The performance of the new crosslinker is compared with available commercial crosslinkers.
AB - Excessive water production from natural gas reservoirs is a main challenge facing the industry nowadays. Polymeric gelants have been widely applied to seal the water production zones, leading to a more feasible production operation. Nevertheless, conventional treatments fail in reservoirs characterized with the presence of sour gases. In this paper, aluminum-based salts are investigated as potential replacement for the conventional chromium acetate as crosslinkers for polyacrylamide (PAM), where aluminum has the advantage of being more environment-friendly besides its abundance. The investigation covers the whole pH range and examines the rheological behavior of the mature gels in the temperature range between 25 and 100 °C. While chromium acetate was proven to be sensitive to the presence of sour gases, namely, CO2 and H2S, because of the inability to produce a stable gel at the acidic conditions, this paper presents aluminum-based crosslinkers that are more tolerable toward high acidity. Unlike the conventional crosslinkers, the gelation rate in aluminum acetate and aluminum aminoacetate systems was found to decrease with the increase in pH. Both the crosslinkers succeeded in producing a strong gel with a storage modulus of more than 2000 Pa. Moreover, this study relates the physical stability of the colloidal aluminum crosslinkers with the viscoelastic behavior of the mature gel. The results reveal that aluminum acetate, among the screened salts, has a controllable gelation time at pH conditions between 3.5 and 8.5 and is the most stable in the temperature range 25-100 °C. PAM/AlAc system has a gelation time of around 50 min at 75 °C making it suitable for near-wellbore treatments, while the gelation time increased to 80 min upon increasing the pH of the system from 4.1 to 4.6. Moreover, the system showed good stability in saline conditions with NaCl concentration of up to 50,000 ppm. Scanning electron microscopy of freeze-dried samples proved the uniform distribution of colloidal crosslinkers and showed sheets wrapping around the colloidal particles. The performance of the new crosslinker is compared with available commercial crosslinkers.
UR - http://www.scopus.com/inward/record.url?scp=85092414553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092414553&partnerID=8YFLogxK
U2 - 10.1021/acsomega.0c02967
DO - 10.1021/acsomega.0c02967
M3 - Article
AN - SCOPUS:85092414553
SN - 2470-1343
VL - 5
SP - 24504
EP - 24512
JO - ACS Omega
JF - ACS Omega
IS - 38
ER -