TY - JOUR
T1 - Diesel Exhaust Particles Induce Impairment of Vascular and Cardiac Homeostasis in Mice
T2 - Ameliorative Effect of Emodin
AU - Nemmar, Abderrahim
AU - Al Dhaheri, Rauda
AU - Alamiri, Jawaher
AU - Al Hefeiti, Suhaila
AU - Al Saedi, Hajar
AU - Beegam, Sumaya
AU - Yuvaraju, Priya
AU - Yasin, Javed
AU - Ali, Badreldin H.
N1 - Publisher Copyright:
© 2015 S. Karger AG, Basel.
PY - 2015
Y1 - 2015
N2 - Background/Aim: There is strong epidemiological and clinical evidence that components of the cardiovascular system are adversely affected by particulate air pollutants through the generation of inflammation and oxidative stress. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), which is commonly found in the roots of rhubarb plant, has strong antioxidant and anti-inflammatory effects. However, its possible protective effect on the cardiovascular effect of particulate air pollutants has never been reported before. Methods: We tested, in Tuck-Ordinary mice, the possible ameliorative effect of emodin on the acute (24h) cardiovascular effects of diesel exhaust particles (DEP, 1 mg/kg) or saline (control). Emodin (4 mg/kg) was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty four h following DEP exposure, several cardiovascular endpoints were assessed. Results: Emodin significantly prevented the increase of leukocyte (n=8, P<0.001) and erythrocyte (n=8, P<0.01) numbers caused by DEP. Likewise, emodin abrogated DEP-induced increase of heart tissue levels of interleukin 1β (n=8, P<0.01) and tumour necrosis factor α (n=8, P<0.05), and significantly mitigated the change of the activities of antioxidant enzymes superoxide dismutase (n=8, P<0.001) and glutathione reductase (n=8, P<0.05). Emodin abolished the in vivo prothrombotic effect of DEP in pial arterioles (n=6, P<0.01) and venules (n=6, P<0.001). Similarly, emodin prevented platelet aggregation in vitro in whole blood (n=4-5, P<0.01), and the shortening of activated partial thromboplastin time (n=4, P<0.001) and prothrombin time (n=4, P<0.01) caused by DEP. Conclusion: We conclude that emodin treatment has consistently protected against DEP-induced impairment of vascular and cardiac homeostasis in mice. Our study provides experimental evidence that the use of functional food such as emodin, pending further studies, can be considered a useful agent and may have the potential to protect or mitigate the cardiovascular detrimental effects observed in people living in cities with high concentrations of particulate air pollution.
AB - Background/Aim: There is strong epidemiological and clinical evidence that components of the cardiovascular system are adversely affected by particulate air pollutants through the generation of inflammation and oxidative stress. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), which is commonly found in the roots of rhubarb plant, has strong antioxidant and anti-inflammatory effects. However, its possible protective effect on the cardiovascular effect of particulate air pollutants has never been reported before. Methods: We tested, in Tuck-Ordinary mice, the possible ameliorative effect of emodin on the acute (24h) cardiovascular effects of diesel exhaust particles (DEP, 1 mg/kg) or saline (control). Emodin (4 mg/kg) was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty four h following DEP exposure, several cardiovascular endpoints were assessed. Results: Emodin significantly prevented the increase of leukocyte (n=8, P<0.001) and erythrocyte (n=8, P<0.01) numbers caused by DEP. Likewise, emodin abrogated DEP-induced increase of heart tissue levels of interleukin 1β (n=8, P<0.01) and tumour necrosis factor α (n=8, P<0.05), and significantly mitigated the change of the activities of antioxidant enzymes superoxide dismutase (n=8, P<0.001) and glutathione reductase (n=8, P<0.05). Emodin abolished the in vivo prothrombotic effect of DEP in pial arterioles (n=6, P<0.01) and venules (n=6, P<0.001). Similarly, emodin prevented platelet aggregation in vitro in whole blood (n=4-5, P<0.01), and the shortening of activated partial thromboplastin time (n=4, P<0.001) and prothrombin time (n=4, P<0.01) caused by DEP. Conclusion: We conclude that emodin treatment has consistently protected against DEP-induced impairment of vascular and cardiac homeostasis in mice. Our study provides experimental evidence that the use of functional food such as emodin, pending further studies, can be considered a useful agent and may have the potential to protect or mitigate the cardiovascular detrimental effects observed in people living in cities with high concentrations of particulate air pollution.
KW - Air Pollution
KW - Emodin
KW - Heart
KW - Inflammation
KW - Particulate matter
KW - Thrombosis
UR - http://www.scopus.com/inward/record.url?scp=84936971383&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84936971383&partnerID=8YFLogxK
U2 - 10.1159/000430315
DO - 10.1159/000430315
M3 - Article
C2 - 26159184
AN - SCOPUS:84936971383
SN - 1015-8987
VL - 36
SP - 1517
EP - 1526
JO - Cellular Physiology and Biochemistry
JF - Cellular Physiology and Biochemistry
IS - 4
ER -