Dynamic Analysis of an Economic and Financial Supply Chain System Using the Supervised Neural Networks

Shahid Ahmad Bhat, Tariq Aljuneidi, Zhaojun Li

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

This study presents the dynamic analysis for the fractional order economic and financial supply chain dynamical system using the supervised neural network performances aided with scale conjugate gradient. The investigations based on the fractional derivatives have been implemented to achieve the realistic and accurate performances of the fractional order economic and financial supply chain dynamical system. The mathematical form of the fractional order economic and financial supply chain dynamical system is categorized into three dynamics: rate of interest, investment cost, and price index. Three different variations based on the fractional order form of the economic and financial supply chain dynamical system have been numerically presented using the supervised neural network performances based on the scale conjugate gradient scheme. The selection of the data for solving the economic and financial supply chain dynamical system is taken as 80% for training, and 12% for testing, and 8% for endorsement. The accuracy of the proposed stochastic scheme is presented using the obtained and referenced Adam results. Rationality, capability and perfection are performed through the supervised neural network with scale conjugate gradient scheme performances-based together with the performances of correlation/regression, mean square error, state transition measures, and error histograms. Finally, a comparison of numerical results is examined and observed that the range of absolute error is between 10-05 to 10-07 which indicates that the proposed stochastic computing model can effectively analyze the economic and financial supply chain dynamical system.

Original languageEnglish
Pages (from-to)95901-95913
Number of pages13
JournalIEEE Access
Volume12
DOIs
Publication statusPublished - 2024

Keywords

  • Financial supply chain
  • fractional order
  • neural networks
  • numerical performances
  • scaled conjugate gradient

ASJC Scopus subject areas

  • General Computer Science
  • General Materials Science
  • General Engineering

Fingerprint

Dive into the research topics of 'Dynamic Analysis of an Economic and Financial Supply Chain System Using the Supervised Neural Networks'. Together they form a unique fingerprint.

Cite this