Effect of Accelerated Weathering on the Thermal, Tensile, and Morphological Characteristics of Polypropylene/Date Nanofiller Composites

Basheer A. Alshammari, Othman Y. Alothman, Abdullah Alhamidi, Mohammad Jawaid, Hamid M. Shaikh

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The aging of polypropylene (PP) composites reinforced with date palm nanofiber (DNF) was investigated in this study in order to predict their long-term performance. To produce composites, date palm nanofibers in the range of 1–5 wt% loading were dry-melt-blended with polypropylene. These biocomposites were then subjected to UV exposure (Xenon arch source) for accelerated weathering for 250 and 500 h according to a standard method. The change in thermal properties before and after accelerated weathering was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA analysis shows that the maximum degradation temperature for sample at 1 wt% loading was 382.7 °C, which slightly decreased to 379.9 °C after 250 h and to 367.7 °C after 500 h of weathering. DSC analysis also revealed lower crystallinity of the same samples after exposure to accelerated weathering. Mechanical properties were also studied to identify the damage induced by accelerated weathering. The tensile strength of the highest loading (5 wt%) of the sample was found to occur at 34.83 MPa, which was slightly lowered to 31.64 after 500 h treatment. A minimal decrease in tensile strength, deterioration, and weathering-induced oxidation indicates the excellent stability of these composites. Therefore, our study provides insight into the aging behavior of such composites, which may be useful in dry conditions, as well as nonstructural automotive and other parts for which minimum tensile strength (~25 MPa) is specified.

Original languageEnglish
Article number6053
JournalMaterials
Volume15
Issue number17
DOIs
Publication statusPublished - Sept 2022
Externally publishedYes

Keywords

  • accelerated weathering
  • date palm
  • nanofillers
  • polypropylene
  • tensile strength
  • thermal properties

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Effect of Accelerated Weathering on the Thermal, Tensile, and Morphological Characteristics of Polypropylene/Date Nanofiller Composites'. Together they form a unique fingerprint.

Cite this