TY - JOUR
T1 - Effect of graded exercise on esophageal motility and gastroesophageal reflux in nontrained subjects
AU - Soffer, E. E.
AU - Wilson, J.
AU - Duethman, G.
AU - Launspach, J.
AU - Adrian, T. E.
PY - 1994/1
Y1 - 1994/1
N2 - The effects of graded exercise on esophageal motility and gastroesophageal reflux were evaluated in nine nontrained subjects, using a catheter with three strain-gauge transducers connected to a solid-state datalogger and an ambulatory intraesophageal pH monitor. Subjects exercised on a stationary bike at 45%, 60%, 75%, and 90% of peak O2 uptake ( {Mathematical expression}O2 max). Durations of exercise sessions and rest periods varied among subjects. Studies were performed after an overnight fast and subjects received only intravenous infusion of 5% glucose solution during the study. Plasma concentrations of gastrin, motilin, glucagon, pancreatic polypeptide (PP), and vasoactive intestinal peptide (VIP) were determined at rest and before and after each exercise session. The duration, amplitude, and frequency of esophageal contractions declined with increasing exercise intensity, and the differences were significant (P≤0.05) for all three variables at 90% {Mathematical expression}O2 max. The number of gastroesophageal reflux episodes and the duration of esophageal acid exposure were significantly (P≤0.05) increased during exercise at 90% {Mathematical expression}O2 max. Plasma regulatory peptide concentrations showed no significant changes between rest and the various exercise sessions. Thus, exercise has profound effects on esophageal contractions and gastroesophageal reflux, which are intensity dependent. These effects were not mediated by the hormones measured. The results were similar to those observed in highly trained athletes, suggesting that the effects of exercise on esophageal function are similar in trained and nontrained subjects performing at similar percentages of {Mathematical expression}O2 max, even though the absolute levels of exercise achieved in each group are different.
AB - The effects of graded exercise on esophageal motility and gastroesophageal reflux were evaluated in nine nontrained subjects, using a catheter with three strain-gauge transducers connected to a solid-state datalogger and an ambulatory intraesophageal pH monitor. Subjects exercised on a stationary bike at 45%, 60%, 75%, and 90% of peak O2 uptake ( {Mathematical expression}O2 max). Durations of exercise sessions and rest periods varied among subjects. Studies were performed after an overnight fast and subjects received only intravenous infusion of 5% glucose solution during the study. Plasma concentrations of gastrin, motilin, glucagon, pancreatic polypeptide (PP), and vasoactive intestinal peptide (VIP) were determined at rest and before and after each exercise session. The duration, amplitude, and frequency of esophageal contractions declined with increasing exercise intensity, and the differences were significant (P≤0.05) for all three variables at 90% {Mathematical expression}O2 max. The number of gastroesophageal reflux episodes and the duration of esophageal acid exposure were significantly (P≤0.05) increased during exercise at 90% {Mathematical expression}O2 max. Plasma regulatory peptide concentrations showed no significant changes between rest and the various exercise sessions. Thus, exercise has profound effects on esophageal contractions and gastroesophageal reflux, which are intensity dependent. These effects were not mediated by the hormones measured. The results were similar to those observed in highly trained athletes, suggesting that the effects of exercise on esophageal function are similar in trained and nontrained subjects performing at similar percentages of {Mathematical expression}O2 max, even though the absolute levels of exercise achieved in each group are different.
KW - esophagus
KW - exercise
KW - hormones
KW - motility
KW - reflux
UR - http://www.scopus.com/inward/record.url?scp=0027972555&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027972555&partnerID=8YFLogxK
U2 - 10.1007/BF02090082
DO - 10.1007/BF02090082
M3 - Article
C2 - 8281857
AN - SCOPUS:0027972555
SN - 0163-2116
VL - 39
SP - 193
EP - 198
JO - Digestive Diseases and Sciences
JF - Digestive Diseases and Sciences
IS - 1
ER -