TY - JOUR
T1 - Electrical Characterization of Normal and Cancer Cells
AU - Al Ahmad, Mahmoud
AU - Al Natour, Zeina
AU - Mustafa, Farah
AU - Rizvi, Tahir A.
N1 - Funding Information:
This work was supported by the UAEU Research Office under Grant 31N207, Grant 31R085, and Grant 31R129.
Publisher Copyright:
© 2013 IEEE.
PY - 2018/4/26
Y1 - 2018/4/26
N2 - In this paper, we characterize and discriminate between normal and cancer cells from three different tissue types, liver, lung, and breast, using capacitance-voltage-based extracted set of parameters. Cells from each type of cancer cell line were suspended in a liquid media either individually or as mixtures with their normal counterparts. Empirically, normal cells were observed to exhibit higher dielectric constants when compared to cancer cells from the same tissue. Moreover, adding cancer cells to normal cells was observed to increase the capacitance of normal cells, and the extent of this increase varied with the type of tissue tested with the lung cells causing the greatest change. This shows that the cancer cells of different cell origin possess their own signature electrical parameters, especially when compared with their normal counterparts, and that cancer cell seems to affect normal cells in a different manner, depending upon the tissue type. It was also noticed that the cells (both cancer and normal) exhibited a higher dielectric value as per the following order (from least to most): Breast, lung, and liver. The changes in electrical parameters from normal to cancer state were explained not only by the modification of its physiological and biochemical properties but also by the morphological changes. This approach paves the way for exploring unique electrical signatures of normal and their corresponding cancer cells to enable their detection and discrimination.
AB - In this paper, we characterize and discriminate between normal and cancer cells from three different tissue types, liver, lung, and breast, using capacitance-voltage-based extracted set of parameters. Cells from each type of cancer cell line were suspended in a liquid media either individually or as mixtures with their normal counterparts. Empirically, normal cells were observed to exhibit higher dielectric constants when compared to cancer cells from the same tissue. Moreover, adding cancer cells to normal cells was observed to increase the capacitance of normal cells, and the extent of this increase varied with the type of tissue tested with the lung cells causing the greatest change. This shows that the cancer cells of different cell origin possess their own signature electrical parameters, especially when compared with their normal counterparts, and that cancer cell seems to affect normal cells in a different manner, depending upon the tissue type. It was also noticed that the cells (both cancer and normal) exhibited a higher dielectric value as per the following order (from least to most): Breast, lung, and liver. The changes in electrical parameters from normal to cancer state were explained not only by the modification of its physiological and biochemical properties but also by the morphological changes. This approach paves the way for exploring unique electrical signatures of normal and their corresponding cancer cells to enable their detection and discrimination.
KW - Capacitance-voltage measurements
KW - cancer cells
KW - dielectric constant
KW - dielectric properties
KW - electrical detection
KW - normal cells
KW - polarization
UR - http://www.scopus.com/inward/record.url?scp=85046334692&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046334692&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2018.2830883
DO - 10.1109/ACCESS.2018.2830883
M3 - Article
AN - SCOPUS:85046334692
SN - 2169-3536
VL - 6
SP - 25979
EP - 25986
JO - IEEE Access
JF - IEEE Access
ER -