TY - JOUR
T1 - Enhanced Glucose Tolerance and Pancreatic Beta Cell Function by Low Dose Aspirin in Hyperglycemic Insulin-Resistant Type 2 Diabetic Goto-Kakizaki (GK) Rats
AU - Amiri, Layla
AU - John, Annie
AU - Shafarin, Jasmin
AU - Adeghate, Ernest
AU - Jayaprakash, Petrilla
AU - Yasin, Javed
AU - Howarth, Frank Christopher
AU - Raza, Haider
N1 - Publisher Copyright:
© 2015 S. Karger AG, Basel.
PY - 2015/7/25
Y1 - 2015/7/25
N2 - Background/Aim: Type 2 diabetes is the most common metabolic disorder, characterized by insulin resistance and pancreatic islet beta-cell failure. The most common complications associated with type 2 diabetes are hyperinsulinemia, hyperglycemia, hyperlipidemia, increased inflammatory and reduced insulin response. Aspirin (ASA) and other non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with the prevention of diabetes, obesity and related cardiovascular disorders. Aspirin has been used in many clinical and experimental trials for the prevention of diabetes and associated complications. Methods: In this study, five month old Goto-Kakizaki (GK) rats, which showed signs of mild hyperglycemia (fasting blood glucose 80-95 mg/dl vs 55-60 mg/dl Wistar control rats) were used. Two subgroups of GK and Wistar control rats were injected intraperitoneally with 100 mg aspirin/kg body weight/ day for 5 weeks. Animals were sacrificed and blood and tissues were collected after performing glucose tolerance (2 h post 2g IP glucose ingestion) tests in experimental and control groups. Results: Aspirin caused a moderate decrease in hyperglycemia. However, we observed a significant improvement in glucose tolerance after ASA treatment in GK rats compared to the nondiabetic Wistar rats. Also, the ASA treated GK rats exhibited a significant decrease in insulinemia. ASA treatment also caused a marked reduction in the pro-inflammatory prostaglandin, PGE2, which was significantly higher in GK rats. On the other hand, no significant organ toxicity was observed after ASA treatment at this dose and time period. However, the total cholesterol and lipoprotein levels were significantly increased in GK rats, which decreased after ASA treatment. Immunofluorescence staining for insulin/glucagon secreting pancreatic cells showed improved beta-cell structural and functional integrity in ASA-treated rats which was also confirmed by SDS-PAGE and Western blot analysis. Conclusion: The improved glucose tolerance in ASA-treated GK rats may be associated with increased insulin responses due to the anti-inflammatory properties of ASA and enhanced nitric oxide (NO) level which facilitated insulin signaling and energy utilization in target tissues. These results may have implications in determining the therapeutic use of ASA in insulin-resistant type 2 diabetes.
AB - Background/Aim: Type 2 diabetes is the most common metabolic disorder, characterized by insulin resistance and pancreatic islet beta-cell failure. The most common complications associated with type 2 diabetes are hyperinsulinemia, hyperglycemia, hyperlipidemia, increased inflammatory and reduced insulin response. Aspirin (ASA) and other non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with the prevention of diabetes, obesity and related cardiovascular disorders. Aspirin has been used in many clinical and experimental trials for the prevention of diabetes and associated complications. Methods: In this study, five month old Goto-Kakizaki (GK) rats, which showed signs of mild hyperglycemia (fasting blood glucose 80-95 mg/dl vs 55-60 mg/dl Wistar control rats) were used. Two subgroups of GK and Wistar control rats were injected intraperitoneally with 100 mg aspirin/kg body weight/ day for 5 weeks. Animals were sacrificed and blood and tissues were collected after performing glucose tolerance (2 h post 2g IP glucose ingestion) tests in experimental and control groups. Results: Aspirin caused a moderate decrease in hyperglycemia. However, we observed a significant improvement in glucose tolerance after ASA treatment in GK rats compared to the nondiabetic Wistar rats. Also, the ASA treated GK rats exhibited a significant decrease in insulinemia. ASA treatment also caused a marked reduction in the pro-inflammatory prostaglandin, PGE2, which was significantly higher in GK rats. On the other hand, no significant organ toxicity was observed after ASA treatment at this dose and time period. However, the total cholesterol and lipoprotein levels were significantly increased in GK rats, which decreased after ASA treatment. Immunofluorescence staining for insulin/glucagon secreting pancreatic cells showed improved beta-cell structural and functional integrity in ASA-treated rats which was also confirmed by SDS-PAGE and Western blot analysis. Conclusion: The improved glucose tolerance in ASA-treated GK rats may be associated with increased insulin responses due to the anti-inflammatory properties of ASA and enhanced nitric oxide (NO) level which facilitated insulin signaling and energy utilization in target tissues. These results may have implications in determining the therapeutic use of ASA in insulin-resistant type 2 diabetes.
KW - Goto-Kakizaki rats
KW - Hyperglycemia
KW - Insulin
KW - Oxidative stress
KW - Pancreas
KW - Serum
UR - http://www.scopus.com/inward/record.url?scp=84937826661&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84937826661&partnerID=8YFLogxK
U2 - 10.1159/000430162
DO - 10.1159/000430162
M3 - Article
C2 - 26202354
AN - SCOPUS:84937826661
SN - 1015-8987
VL - 36
SP - 1939
EP - 1950
JO - Cellular Physiology and Biochemistry
JF - Cellular Physiology and Biochemistry
IS - 5
ER -