TY - JOUR
T1 - Epstein-Barr virus-infected cells release Fas ligand in exosomal fractions and induce apoptosis in recipient cells via the extrinsic pathway
AU - Ahmed, Waqar
AU - Philip, Pretty S.
AU - Attoub, Samir
AU - Khan, Gulfaraz
N1 - Publisher Copyright:
© 2015 The Authors.
PY - 2015/12
Y1 - 2015/12
N2 - Epstein-Barr virus (EBV; human herpesvirus 4) is an oncogenic herpesvirus implicated in the pathogenesis of several human malignancies. A number of recent studies indicate that EBV can manipulate the local microenvironment by excreting viral and cellular components in nanovesicles called exosomes. In this study, we investigated the impact of EBV-derived exosomes on apoptosis of recipient cells and the molecular pathway involved in this process. Exosomes from EBV-infected but not from non-infected cells induced apoptosis in a number of different cell types, including B-cells, T-cells and epithelial cells. However, this phenomenon was not universal and the Burkitt’s lymphoma-derived B-cell line BJAB was found to be resistant to apoptosis. Exosomes from both type I and type III EBV latently infected cells induced apoptosis in a doseand time-dependent manner. Moreover, cells exposed to EBV exosomes did not form colonies in soft agar assays. We further show that fluorescently labelled exosomes derived from EBV-infected cells are taken up by non-infected cells and induce apoptosis via the extrinsic pathway. Inhibition of caspase-3/7/8 blocks EBV exosome-mediated apoptosis. Furthermore, our data indicate that EBV exosomes trigger apoptosis through the Fas ligand (FasL)-mediated extrinsic pathway, as FasL was present in EBV exosomal fractions and anti-FasL antibodies could block EBV exosome-mediated apoptosis. Together, these data support the notion that EBV hijacks the exosome pathway to excrete viral and cellular components that can modulate its microenvironment.
AB - Epstein-Barr virus (EBV; human herpesvirus 4) is an oncogenic herpesvirus implicated in the pathogenesis of several human malignancies. A number of recent studies indicate that EBV can manipulate the local microenvironment by excreting viral and cellular components in nanovesicles called exosomes. In this study, we investigated the impact of EBV-derived exosomes on apoptosis of recipient cells and the molecular pathway involved in this process. Exosomes from EBV-infected but not from non-infected cells induced apoptosis in a number of different cell types, including B-cells, T-cells and epithelial cells. However, this phenomenon was not universal and the Burkitt’s lymphoma-derived B-cell line BJAB was found to be resistant to apoptosis. Exosomes from both type I and type III EBV latently infected cells induced apoptosis in a doseand time-dependent manner. Moreover, cells exposed to EBV exosomes did not form colonies in soft agar assays. We further show that fluorescently labelled exosomes derived from EBV-infected cells are taken up by non-infected cells and induce apoptosis via the extrinsic pathway. Inhibition of caspase-3/7/8 blocks EBV exosome-mediated apoptosis. Furthermore, our data indicate that EBV exosomes trigger apoptosis through the Fas ligand (FasL)-mediated extrinsic pathway, as FasL was present in EBV exosomal fractions and anti-FasL antibodies could block EBV exosome-mediated apoptosis. Together, these data support the notion that EBV hijacks the exosome pathway to excrete viral and cellular components that can modulate its microenvironment.
UR - http://www.scopus.com/inward/record.url?scp=84955609501&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84955609501&partnerID=8YFLogxK
U2 - 10.1099/jgv.0.000313
DO - 10.1099/jgv.0.000313
M3 - Article
C2 - 26467838
AN - SCOPUS:84955609501
SN - 0022-1317
VL - 96
SP - 3646
EP - 3659
JO - Journal of General Virology
JF - Journal of General Virology
IS - 12
ER -