Evaluating the Optical Properties of TiO2 Nanofluid for a Direct Absorption Solar Collector

Z. Said, M. H. Sajid, R. Saidur, G. A. Mahdiraji, N. A. Rahim

Research output: Contribution to journalArticlepeer-review

79 Citations (Scopus)

Abstract

Recent studies specify that designated nanofluids may increase the proficiency of direct absorption solar thermal collectors. To determine the efficiency of nanofluids in solar applications, their capability to change light energy to thermal energy must be identified (i.e., the absorption spectrum of the solar material). In view of that, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (200- 1100 nm). In the first decade of nanofluid research, most of the focus was on measuring and modeling the fundamental thermophysical properties of nanofluids (i.e., thermal conductivity, density, viscosity, and convection coefficients). Lately, considerable focus is given to the fundamental optical properties of nanofluids. However, the effect of particle size, shape, and volume fraction of nanoparticles as well as alternation of the base fluids, which can significantly affect scattering and absorption, have not been addressed to date in the literature. In this study, the effects of size and concentration of TiO2 nanoparticles on the extinction coefficient were analyzed using the Rayleigh approach. The results show that smaller particle size (<20 nm) has a nominal effect on the optical properties of nanofluids. Volume fraction is linearly proportionate to the extinction coefficient. Considering a nanoparticle size of 20 nm, almost 0% transmissivity is obtained for wavelengths ranging from 200 to 300 nm. However, a sudden increase of 71% in transmissivity is noted from 400 nm, gradually increasing to 88% and becoming similar to that of water at 900 nm. Promising results are observed for volume fractions below 0.1%.

Original languageEnglish
Pages (from-to)1010-1027
Number of pages18
JournalNumerical Heat Transfer; Part A: Applications
Volume67
Issue number9
DOIs
Publication statusPublished - May 3 2015
Externally publishedYes

ASJC Scopus subject areas

  • Numerical Analysis
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Evaluating the Optical Properties of TiO2 Nanofluid for a Direct Absorption Solar Collector'. Together they form a unique fingerprint.

Cite this